

FACULTAD DE CIENCIAS DEPARTAMENTO DE ASTRONOMÍA

Realización del Primer Estudio Sistemático de Contaminación Lumínica del Valle del Elqui

Autor: Diego Ignacio Fernández Olivares Profesor Patrocinante: Rodolfo Angeloni

Tesis presentada para optar al Grado Académico de Magíster en Astronomía

La Serena, Chile, 10 de mayo de 2022

CONSTANCIA

D																					
Don	 	 	 	 	 		 	 	 	 			 		 					 	

HACE CONSTAR:

Que el trabajo correspondiente a la presente Tesis de Magíster, titulada "Realización del Primer Estudio Sistemático de Contaminación Lumínica del Valle del Elqui", ha sido realizada por Don Diego Ignacio Fernández Olivares, bajo mi dirección.

Para que conste y en cumplimiento de las normativas vigentes de la Universidad de la Serena, Chile, firmo el presente documento en La Serena, Chile, 10 de mayo de 2022.

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN ASTRONOMÍA

TÍTULO : REALIZACIÓN DEL PRIMER ESTUDIO SISTE-

MÁTICO DE CONTAMINACIÓN LUMÍNICA

DEL VALLE DEL ELQUI

PRESENTADA POR : DIEGO IGNACIO FERNÁNDEZ OLIVARES

DIRECTOR DE TESIS : PROF. RODOLFO ANGELONI

TRIBUNAL CALIFICADOR

El tribunal de tesis, conformado por:

PRESIDENTE :

MIEMBROS DEL TRIBUNAL : *

*

*

ACUERDAN OTORGARLE LA CALIFICACIÓN DE:

Resumen

La Contaminación Luminíca (CL), como objeto de estudio, ha ido cobrando una mayor importancia por parte de la comunidad científica durante los últimos años. Dicho fenómeno tiene impactos en diversas áreas como la biodiversidad, el medio ambiente, la salud humana y la astronomía.

Esta tesis tiene como objetivo estudiar y documentar los impactos de la CL en observatorios astro-turísticos en la Región de Coquimbo, Chile, zona de gran importancia internacional en el ámbito astronómico por la alta calidad de sus cielos nocturnos. Para este propósito se realizó una campaña de observación cubriendo 9 sitios de interés de relevancia astro-turística dentro de la Región. Se aplicaron métodos fotométricos, utilizando cámaras réflex calibradas específicamente para obtener información de Brillo del Cielo y de su Temperatura de Color Correlacionada.

Se encontró que los sitios más contaminados lumínicamente son el Observatorio Cerro Mayu, ubicado en la comuna de La Serena, Collowara, ubicado en la comuna de Andacollo y Valle del Sol, ubicado en la comuna de Monte Patria. Aún así, todos los sitios visitados sufren un cierto grado de CL, lo cual se traduce en una pérdida de la visibilidad de los objetos de la esfera celeste, trayendo consigo consecuencias negativas en la astronomía cultural, y por tanto en el astro-turismo de la Región.

Este proyecto de tesis hace posible el desarrollo de iniciativas que tienen por finalidad instruir a la población sobre los impactos de la CL sobre la calidad de los cielos nocturnos, su importancia, y cómo se puede proteger este patrimonio cultural. Paralelamente se generaron alianzas colaborativas interdisciplinarias en diversos ámbitos tanto científico, social y político con el fin de impulsar el conocimiento y acciones concretas en virtud de mitigar y controlar el fenómeno.

Summary

Light Pollution (LP), as an subject of study, has been taking greater and greater importance among the scientific community in the recent years. This phenomenon has impacts over several areas such as biodiversity, enviroment, human health and astronomy.

This thesis aims to study and document the impacts of LP on astro-tourism observatories in the Región de Coquimbo, Chile, an area of high international importance in the astronomical field due to the high quality of its night skies. For this purpose, an observation campaign was carried out covering 9 observatories of astro-tourism relevance throughout the Region. Photometric methods were applied, using reflex cameras specifically calibrated to obtain information on Sky Brightness and its Correlated Color Temperature.

It was found that the most light-contaminated sites are the Observatorio Cerro Mayu, located in the commune of La Serena, Collowara, located in the commune of Andacollo, and Valle del Sol, located in the commune of Monte Patria. Even so, all the sites visited suffer a certain degree of LP, which translates into a visibility loss of objects in the celestial sphere, bringing with it negative consequences in cultural astronomy, and therefore in astro-tourism of the Region.

This thesis project makes possible to develop initiatives that aim to educate the population about the impacts of CL on the quality of the night skies, its importance, and how this cultural heritage can be protected. At the same time, interdisciplinary collaborative alliances were generated in the scientific, social and political field in order to promote knowledge and concrete actions aimed at mitigating and controlling the phenomenon.

Agradecimientos

Quiero partir agradeciendo infinitamente el apoyo incondiciomal de mis padres, Ana y Gustavo, porque sin ustedes nunca hubiese podido llegar a donde he llegado, y porque este trabajo no hubiese sido posible sin su apoyo financiero, sus consejos, su cariño y mucho más. No hay palabras para expresar todo el cariño que les tengo.

A mi guía durante toda esta etapa, Profesor Rodolfo por darme la oportunidad de llevar el proyecto de tesis a la realidad, por sus consejos y orientación en todo momento, por llevarme por el camino correcto.

A mi compañero de viaje, Juan Pablo, que le estoy muy agradecido por acompañarme en la travesía y por traspasarme sus conocimientos siempre con una sonrisa y la buena música.

A mi oso tank, Fran, por haber estado ahí en las buenas y no tan buenas, darme sus consejos, sacarme una sonrisa cuando lo necesitaba, su paciencia infinita y todo el apoyo incondicial que me dio y me sigue dando.

A mi familia por sus buenas energías y sus asaditos, muy buen asador Moncheke. Y en especial gracias a mis hermanos Claudio y Leo por prestarme su ayuda cada vez que la necesité.

Al staff a cargo de todos los sitios visitados en este trabajo por siempre mostrar una buena disposición para poder ingresar a realizar mediciones.

A los profesores Marcelo y Guillermo, a Pedro por sus comentarios y sugerencias para poder mejorar este trabajo.

A todos los profesores y profesoras que me dieron una sólida formación académica en el Magíster.

A DIDULS por financiar una parte importante del arancel del magíster.

¡Gracias a todas las personas que hicieron posible esta tesis!

Índice general

Re	esum	en		IV
Su	ımma	ıry		V
Αę	grade	cimien	tos	VI
Ι			o teórico y práctico para comprender la Conta-	
m	inac	ión Lı	umínica	1
1.	Intr	oduccio	ón y Objetivos	2
2.	¿Có	mo se r	nide la luz?	10
	2.1.	Conce	eptos Radiométricos	11
		2.1.1.	Ángulo sólido	11
		2.1.2.	Energía radiante	12
		2.1.3.	Flujo/Potencia radiante	12
		2.1.4.	Intensidad radiante	13
		2.1.5.	Densidad de flujo radiante (Irradiancia/Exitancia ra-	
			diante)	13
		2.1.6.	Radiancia	14
	2.2.	Conce	eptos fotométricos	15
		2.2.1.	Flujo luminoso	15
		2.2.2.	Intensidad luminosa	15
		2.2.3.	Iluminancia	17
		2.2.4.	Luminancia	17
	2.3.	Brillo	del cielo	19
	2.4.	Tempe	eratura de Color Correlacionada (CCT)	20

3.	El B	rillo de	el Cielo Nocturno	22
	3.1.	Fuente	es naturales	23
		3.1.1.	Airglow	23
		3.1.2.	Luz Zodiacal	26
		3.1.3.	Luz Estelar Integrada	27
		3.1.4.	Luz Galáctica Difusa	27
		3.1.5.	Luz de Fondo Extragaláctica	27
	3.2.	Fuente	es artificiales	28
		3.2.1.	Tipos de CL	29
			3.2.1.1. Sky glow	29
			3.2.1.2. Light intrusion	31
			3.2.1.3. Glare	32
			3.2.1.4. Clutter	32
		3.2.2.	Tecnologías de iluminación	32
			3.2.2.1. Radiación Térmica	34
			3.2.2.2. Descarga	34
			3.2.2.3. Electroluminiscencia	36
4.	Mét	odos pa	ara cuantificar la CL	38
	4.1.	Satélit	es	38
		4.1.1.	DMSP	38
		4.1.2.	VIIRS	40
	4.2.	Instru	mentos unidimensionales	42
		4.2.1.	SQM	42
		4.2.2.	TESS	44
	4.3.	Instru	mentos bidimensionales	44
		4.3.1.	ASTMON	45
		4.3.2.	Sky Quality Camera	46
	4.4.		trógrafo SAND	48

II	In	ıpacto	s de la Contaminación Lumínica sobre la cali	-
da	ıd de	e los ci	elos nocturnos en sitios de interés astro-turístic	os
de	e la F	Regiór	n de Coquimbo	51
5.	Can	npaña d	le Observación	52
	5.1.	Obser	vatorio El Sauce, Río Hurtado	54
	5.2.	Obser	vatorio Collowara, Andacollo	55
	5.3.	Obser	vatorio Cruz del Sur, Combarbalá	56
	5.4.	Obser	vatorio Cancana, Cochiguaz	57
	5.5.	Obser	vatorio Mamalluca, Vicuña	59
	5.6.	Obser	vatorio Valle del Sol, Montepatria	60
	5.7.	Obser	vatorio del Pangue, Valle del Elqui	61
	5.8.	Pisco I	Elqui, Paihuano	62
	5.9.	Obser	vatorio Cerro Mayu, Quebrada de Talca	63
6.	Adq	uisició	n, reducción y análisis de imágenes	65
	6.1.	Obten	ción de imágenes	65
		6.1.1.	SQC	67
			6.1.1.1. Configuración inicial	67
			6.1.1.2. Procedimiento en terreno	70
			6.1.1.3. ISO y tiempos de exposición	72
		6.1.2.	Meteorología de Zoom Earth	76
	6.2.	Reduc	cción de imágenes	78
		6.2.1.	Archivos de calibración	78
		6.2.2.	Información espacio-temporal	78
		6.2.3.	Rotación de la imagen	79
		6.2.4.	Determinación del horizonte local	80
		6.2.5.	Comprobación de la alineación de la imagen	81
		6.2.6.	NSB y CCT	83
	6.3.	Anális	sis de imágenes	86
		6.3.1.	Identificación de las fuentes de CL	86
		6.3.2.	Áreas de interés	91
		6.3.3.	Modelo GAMBONS	93

7.	Res	ultados		95
	7.1.	El Sau	ice, Río Hurtado	95
		7.1.1.	Fuentes de CL	95
		7.1.2.	Perfiles NSB y CCT	99
			7.1.2.1. NSB/CCT vs azimut	99
			7.1.2.2. NSB/CCT vs ángulo cenital	99
		7.1.3.	Series temporales NSB y CCT	101
		7.1.4.	Comparación SQC vs GAMBONS	104
		7.1.5.	Análisis	105
	7.2.	Collov	wara, Andacollo	108
		7.2.1.	Fuentes de CL	108
		7.2.2.	Perfiles NSB y CCT	117
			7.2.2.1. NSB/CCT vs azimut	117
			7.2.2.2. NSB/CCT vs ángulo cenital	117
		7.2.3.	Series temporales NSB y CCT	119
		7.2.4.	Comparación SQC vs GAMBONS	122
		7.2.5.	Análisis	123
	7.3.	Cruz	del Sur, Combarbalá	127
		7.3.1.	Fuentes de CL	127
		7.3.2.	Perfiles NSB y CCT	131
			7.3.2.1. NSB/CCT vs azimut	131
			7.3.2.2. NSB/CCT vs ángulo cenital	131
		7.3.3.	Series temporales NSB y CCT	133
		7.3.4.	Comparación SQC vs GAMBONS	135
		7.3.5.	Análisis	136
	7.4.	Canca	na, Cochiguaz	139
		7.4.1.	Fuentes de CL	139
		7.4.2.	Perfiles NSB y CCT	143
			7.4.2.1. NSB/CCT vs azimut	143
			7.4.2.2. NSB/CCT vs ángulo cenital	143
		7.4.3.	Series temporales NSB y CCT	145
		7.4.4.	Comparación SQC vs GAMBONS	147

	7.4.5.	Análisis
7.5.	Mama	lluca, Vicuña
	7.5.1.	Fuentes de CL
	7.5.2.	Perfiles NSB y CCT
		7.5.2.1. NSB/CCT vs azimut
		7.5.2.2. NSB/CCT vs ángulo cenital 156
	7.5.3.	Series temporales NSB y CCT
	7.5.4.	Comparación SQC vs GAMBONS 160
	7.5.5.	Análisis
7.6.	Valle o	del Sol, Monte Patria
	7.6.1.	Fuentes de CL
	7.6.2.	Perfiles NSB y CCT
		7.6.2.1. NSB/CCT vs azimut 162
		7.6.2.2. NSB/CCT vs ángulo cenital 162
	7.6.3.	Series temporales NSB y CCT 169
	7.6.4.	Comparación SQC vs GAMBONS
	7.6.5.	Análisis
7.7.	Del Pa	ingue, Ruta D-445
	7.7.1.	Fuentes de CL
	7.7.2.	Perfiles NSB y CCT
		7.7.2.1. NSB/CCT vs azimut
		7.7.2.2. NSB/CCT vs ángulo cenital 178
	7.7.3.	Series temporales NSB y CCT
	7.7.4.	Comparación SQC vs GAMBONS
	7.7.5.	Análisis
7.8.	Pisco l	Elqui, Paihuano
	7.8.1.	Fuentes de CL
	7.8.2.	Perfiles NSB y CCT
		7.8.2.1. NSB/CCT vs azimut
		7.8.2.2. NSB/CCT vs ángulo cenital 193
	7.8.3.	Comparación SQC vs GAMBONS
	7.8.4.	Análisis

	7.9.	Cerro	Mayu, Quebrada de Talca	196
		7.9.1.	Fuentes de CL	196
		7.9.2.	Perfiles NSB y CCT	200
			7.9.2.1. NSB/CCT vs azimut	200
			7.9.2.2. NSB/CCT vs ángulo cenital	200
		7.9.3.	Comparación SQC vs GAMBONS	202
		7.9.4.	Análisis	203
8.	Disc	cusione	es generales	205
III	(C	onclu	siones y Trabajos Futuros	212
9.	Con	clusion	nes y Trabajos Futuros	213
	9.1.	Concl	usiones	213
	9.2.	Vincu	lación con el Medio	217
	9.3.	Trabaj	os Futuros	223
Bil	oliog	rafía		225

Índice de figuras

1.1.	Representación artística de los observatorios ubicados en el	
	norte de Chile	2
1.2.	Vista del norte de Chile	3
1.3.	Mapamundi de la superficie iluminada	4
1.4.	Golondrina de mar negra	6
1.5.	Ciudad de L.A. vista desde Mount Wilson en los años 1910,	
	1925 y 2002	7
2.1.	Concepto de ángulo sólido	11
2.2.	Concepto de irradiancia	14
2.3.	Concepto de radiancia	15
2.4.	Flujo Luminoso	16
2.5.	Intensidad Luminosa	16
2.6.	Iluminancia	17
2.7.	Luminancia	18
2.8.	CCT para los distintos tipos de tecnologías de iluminación	21
3.1.	Capas de la atmósfera en función de la altitud	23
3.2.	Fenómeno Nightglow	25
3.3.	Luz Zodiacal	26
3.4.	Sky glow sobre la ciudad de Coquimbo	30
3.5.	Glare	33
3.6.	Clutter	33
3.7.	Nueve emisiones espectrales de distintos tipos de tecnologías	
	de iluminación	35

5.0.	rueve chinsiones espectiales de distintos tipos de techologías	
	de iluminación	37
3.9.	Relación de la radiancia del cielo en función de la distancia	37
4.1.	(A) Instrumento DMSP y (B) Atlas de brillo artificial	39
4.2.	Respuesta espectral del instrumento VIIRS y los instrumentos	
	DMSP, SQM y los canales RGB de la cámara DSLR Nikon D3S	
	(Sanchez de Miguel, 2015)	40
4.3.	(A) Satélite Suomi NPP y (B) Atlas de brillo artificial	41
4.4.	Instrumentos unidimensionales	43
4.5.	Datos que entrega el instrumento TESS	44
4.6.	Concepto de imagen del hemisferio superior (izquierda) e imá-	
	gen de la esfera completa (derecha)	45
4.7.	Instrumentos ULS-1 y ULS-2	47
4.8.	Imagen RGB bruta	48
4.9.	Imagen en falso color de un cielo contaminado lumínicamente	
	obtenida a partir de un instrumento SQC	49
4.10.	Espectrógrafo SAND	50
5.1.	Localizaciones geográficas de los observatorios visitados en la	
	Región de Coquimbo	54
5.2.	Observatorio El Sauce, Río Hurtado	55
5.3.	Observatorio Collowara, Andacollo	56
5.4.	Trabajo en terreno, Observatorio Collowara	57
5.5.	Observatorio Cruz del Sur, Combarbalá	58
5.6.	Trabajo en terreno, Observatorio Cruz del Sur	58
5.7.	Observatorio Cancana, Cochiguaz	59
5.8.	Oservatorio Mamalluca, Vicuña	60
5.9.	Observatorio Valle del Sol, Carén	61
5.10.	Observatorio Del Pangue, Valle del Elqui	62
5.11.	Pisco Elqui, Paihuano	63
5.12.	Observatorio Cerro Mayu, Quebrada de Talca	64
5.13.	Alrededores del Observatorio Cerro Mayu	64

6.1.	Configuraciones de Fecha/Hora/Zona	67
6.2.	Menú de ajustes SH00T1	68
6.3.	Configuraciones de GPS en el menú de ajustes SET UP3	69
6.4.	Ajustes del lente Sigma 8mm fisheye	69
6.5.	Vista satelital del Observatorio Cerro Mayu	70
6.6.	Alineaciones de la cámara	71
6.7.	Alineación de la SQC en los distintos sitios de estudio	72
6.8.	Información satelital de nubes, Observatorio Collowara	76
6.9.	Archivo Calibracion	78
6.10.	Información espacio-temporal	79
6.11.	Rotación y Sky Border de la imagen	79
6.12.	Elección manual del borde del cielo	80
6.13.	Comparación de imágenes obtenidas en el Observatorio Cerro	
	Mayu	81
6.14.	Corrección del borde negro en una imagen	82
6.16.	Comparación de coordenadas con Stellarium	84
6.17.	Imagen procesada . SQC	85
6.18.	Imágenes RGB en proyección azimutal desde el Observatorio	
	Collowara	87
6.19.	Distintas proyecciones de mapas NSB y CCT para la imagen	
	IMG001	87
6.20.	Interfaz Light Pollution Map	88
6.21.	Proyección cilíndrica Figura 6.19a	89
6.22.	Áreas de interés	91
6.23.	Interfaz página oficial modelo GAMBONS	94
7.1.	El Sauce - Proyección azimutal RGB	96
7.2.	El Sauce - Proyecciones cilíndricas	97
7.3.	El Sauce - Áreas de interés	98
7.4.	El Sauce - Anillo azimutal	99
7.5.	El Sauce - Perfiles NSB y CCT	100
7.6.	El Sauce - Series temporales	103

7.7.	El Sauce - Comparación GAMBONS	104
7.8.	Collowara - Proyección azimutal RGB	109
7.9.	Collowara - Proyecciones cilíndricas	110
7.10.	Zonas preseleccionadas para el Área 1	112
7.11.	Zonas preseleccionadas para el Área 2	113
7.12.	Elección del área Clean Direction vista desde el Light Pollution	
	Map	114
7.13.	Perfíl de elevación Clean Direction	115
7.14.	Collowara - Áreas de interés	116
7.15.	Collowara - Anillo azimutal	117
7.16.	Collowara - Perfiles NSB y CCT	118
7.17.	Collowara - Series temporales NSB y CCT	121
7.18.	Collowara - Comparación GAMBONS	122
7.19.	Cruz del Sur - Proyección azimutal RGB	128
7.20.	Cruz del Sur - Proyecciones cilíndricas	129
7.21.	Cruz del Sur - Áreas de interés	130
7.22.	Cruz del Sur - Anillo azimutal	131
7.23.	Cruz del Sur - Perfiles NSB y CCT	132
7.24.	Cruz del Sur - Series temporales	134
7.25.	Cruz del Sur - Comparación GAMBONS	135
7.26.	Cancana - Proyección azimutal RGB	140
7.27.	Cancana - Proyecciones cilíndricas	141
7.28.	Cancana - Áreas de interés	142
7.29.	Cancana - Perfiles NSB y CCT	144
7.30.	Cancana - Series temporales	146
7.31.	Cancana - Comparación GAMBONS	147
7.32.	Mamalluca - Proyección azimutal RGB	151
7.33.	Mamalluca - Proyecciones cilíndricas	152
7.34.	Mamalluca - Áreas de interés	153
7.35.	Mamalluca - Anillo azimutal	155
7.36.	Mamalluca - Perfiles NSB y CCT	157
7.37.	Mamalluca - Series temporales	159

7.38.	Mamalluca - Comparación GAMBONS	160
7.39.	Valle del Sol - Proyección azimutal RGB	164
7.40.	Valle del Sol- Proyecciones cilíndricas	165
7.41.	Valle del Sol - Áreas de interés	166
7.42.	Valle del Sol - Perfiles NSB y CCT	168
7.43.	Valle del Sol - Series temporales	170
7.44.	Valle del Sol - Comparación GAMBONS	171
7.45.	Del Pangue - Proyección azimutal RGB	175
7.46.	Del Pangue - Proyecciones cilíndricas	176
7.47.	Del Pangue - Áreas de interés	177
7.48.	Del Pangue - Anillo azimutal	178
7.49.	Del Pangue - Perfiles NSB y CCT	179
7.50.	Del Pangue - Series temporales	182
7.51.	Del Pangue - Comparación GAMBONS	183
7.52.	Pisco Elqui - Proyección azimutal RGB	188
7.53.	Pisco Elqui - Proyecciones cilíndricas	189
7.54.	Cerro Mayu - Áreas de interés	190
7.55.	Pisco Elqui - Anillo azimutal	191
7.56.	Cerro Mayu - Perfiles NSB y CCT	192
7.57.	Cerro Mayu - Comparación GAMBONS	193
7.58.	Cerro Mayu - Proyección azimutal RGB	197
7.59.	Cerro Mayu - Proyecciones cilíndricas	198
7.60.	Cerro Mayu - Áreas de interés	199
7.61.	Cerro Mayu - Anillo azimutal	200
7.62.	Cerro Mayu - Perfiles NSB y CCT	201
7.63.	Cerro Mayu - Comparación GAMBONS	202
8.1.	Comparación de imágenes SQC entre los 4 sitios seleccionados	209
8.2.	Nomograma de comparación de NSB	211
9.1.	Presentación de resultados Observatorio Collowara	218
9.2.	Actividad "Apagón por nuestros cielos"	218
9.3.	Informe Técnico-Científico Observatorio Collowara	

9.4.	Presentación de resultados Observatorio Cruz del Sur	220
9.5.	Evento "Preservación de los cielos oscuros de Chile"	221

Índice de tablas

2.1.	Resumen de las magnitudes radiométricas y fotométricas equi-	
	valentes y sus unidades	19
3.1.	Contribuciones naturales medias al NSB cenital para una la-	
	titud geográfica igual a 40° N. Valores obtenidos a partir del	
	modelo GAMBONS (Masana et al. 2020)	28
6.1.	Lista del equipamiento utilizado para mediciones de CL en	
	terreno	66
6.2.	Lista de los sitios de estudio (observatorios) visitados durante	
	la campaña de observación	74
6.3.	Información meteorológica de Zoom Earth para la campaña de	
	mediciones con la SQC	77
6.4.	Lista de las imágenes utilizadas para el análisis de cada sitio	
	de estudio	90
7.1.	Fuentes de CL identificadas que afectan el O. El Sauce ordena-	
	das de manera ascendente según su azimut	95
7.2.	El Sauce - Áreas de interés	98
7.3.	El Sauce - Sectores de interés	101
7.4.	El Sauce - Comparación de valores NSB con modelo GAMBONS	5104
7.5.	El Sauce - Valores de NSB y CCT promedio	105
7.6.	Fuentes de CL identificadas que afectan el O. Collowara orde-	
	nadas de manera ascendente según su azimut	108
7.7.	Collowara - Áreas de interés	115
7.8.	Collowara - Sectores de interés	119

7.9.	Collowara - Comparación de valores NSB con modelo GAM-	
	BONS	122
7.10.	Collowara - Valores de NSB y CCT promedio	123
7.11.	Fuentes de CL identificadas que afectan el O. Cruz del Sur or-	
	denadas de manera ascendente según su azimut	127
7.12.	Cruz del Sur - Áreas de interés	130
7.13.	Cruz del Sur - Sectores de interés	133
7.14.	. Cruz del Sur - Comparación de valores NSB con modelo GAM-	
	BONS	135
7.15.	Cruz Del Sur - Valores de NSB y CCT promedio	136
7.16.	Fuentes de CL identificadas que afectan el O. Cancana orde-	
	nadas de manera ascendente según su azimut	139
7.17.	Cancana - Áreas de interés	142
7.18.	Cancana - Sectores de interés	145
7.19.	Cancana - Comparación de valores NSB con modelo GAMBONS	5147
7.20.	Cancana - Valores de NSB y CCT promedio	148
7.21.	Fuentes de CL identificadas que afectan el O. Mamalluca or-	
	denadas de manera ascendente según su azimut	150
7.22.	Mamalluca - Áreas de interés	154
7.23.	Mamalluca - Sectores de interés	158
7.24.	Mamalluca - Comparación de valores NSB con modelo GAM-	
	BONS	160
7.25.	Mamalluca - Valores de NSB y CCT promedio	161
7.26.	Fuentes de CL identificadas que afectan el O. Valle del Sol or-	
	denadas de manera ascendente según su azimut	163
7.27.	Valle del Sol - Áreas de interés	166
7.28.	Valle del Sol - Sectores de interés	169
7.29.	Valle del Sol - Comparación de valores NSB con modelo GAM-	
	BONS	171
7.30.	Valle del Sol - Valores de NSB y CCT promedio	172
7.31.	Fuentes de CL identificadas que afectan el O. Del Pangue or-	
	denadas de manera ascendente según su azimut	174

7.32.	Del Pangue - Áreas de interés	177
7.33.	Del Pangue - Sectores de interés	180
7.34.	Del Pangue - Comparación de valores NSB con modelo GAM-	
	BONS	183
7.35.	Del Pangue - Valores de NSB y CCT promedio	184
7.36.	Fuentes de CL identificadas que afectan el punto de medicio-	
	nes en Pisco Elqui ordenadas de manera ascendente según su	
	azimut	187
7.37.	Cerro Mayu - Áreas de interés	190
7.38.	Pisco Elqui - Comparación de valores NSB con modelo GAM-	
	BONS	194
7.39.	Pisco Elqui - Valores de NSB y CCT promedio	194
7.40.	Fuentes de CL identificadas que afectan el O. Cerro Mayu or-	
	denadas de manera ascendente según su azimut	196
7.41.	Cerro Mayu - Áreas de interés	199
7.42.	Cerro Mayu - Comparación de valores NSB con modelo GAM-	
	BONS	202
7.43.	Cerro Mayu - Valores de NSB y CCT promedio	203
8.1.	Comparación entre los 4 sitios elegidos. Se indica el NSB y	
	CCT para un círculo alrededor del zenit de 30° y también para	
	un anillo entre 80° y 90° en ángulo cenital. Los valores de NSB	
	y CCT corresponden a una sola imagen de la noche en cada	
	uno de los lugares listados, para la fecha y hora correspondiente	.210

Parte I

Trasfondo teórico y práctico para comprender la Contaminación Lumínica

Capítulo 1

Introducción y Objetivos

El norte de Chile es conocido por ser el nodo astronómico más importante del mundo (Silva, B., 2020). Esto se atribuye a la capacidad estructural que se tiene para hacer ciencia, contando con instalaciones de última generación (Figura 1.1). Esta gran cantidad de observatorios en el norte de Chile se debe a las condiciones atmosféricas favorables de la macrozona: la baja humedad, las bajas turbulencias y las más de 300 noches despejadas al año hacen del norte de Chile un lugar propicio para la observación astronómica. En la Figura 1.2 se observan pocas nubes ya que el norte de Chile es una zona extremadamente seca, debido a la influencia de la fría corriente de Humboldt a lo largo de la costa y las altas montañas de la cordillera de los Andes que actúan como barrera.

FIGURA 1.1: Representación artística de los observatorios ubicados en el norte de Chile. Fuente: symmetry magazine.



FIGURA 1.2: Vista del norte de Chile desde el transbordador espacial de la NASA. Se indica la ubicación del VLT en el desierto de Atacama, y la ubicación de ALMA en Chajnantor, vistos de norte a sur. Fuente: ESO/Claude Nicollier.

Sin embargo, hoy en día los cielos nocturnos del Norte de Chile se ven amenazados por el fenómeno de la **Contaminación Lumínica** (de aquí en adelante, CL), que es un problema a escala global que ha tenido un aumento sostenido a lo largo de los últimos años (Kyba et al. 2017). Entre los años 2012 y 2016 el área iluminada de la Tierra ha tenido un crecimiento anual del 2.2 % y el aumento en la radiancia total ha sido del 1.8 % como tasa anual (Figura 1.3.).

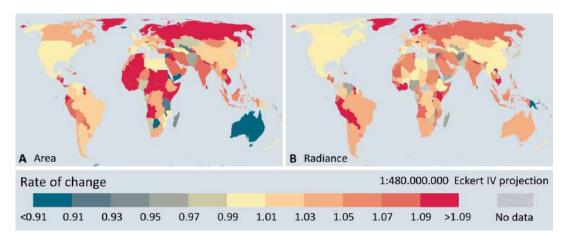


FIGURA 1.3: Patrones geográficos en cambios de (A) áreas iluminadas artificialmente y (B) radiancia de las áreas iluminadas. Los cambios se muestran como una tasa anual entre los años 2012 y 2016. Figura 1 de Kyba et al. 2017

El concepto de contaminación lumínica se refiere a "Cualquier Luminosidad Artificial que, por su color, distribución o niveles, genera impactos en el cielo nocturno, en la biodiversidad y en la salud de las personas".

Para entender la causa de este tipo de contaminación se debe tener en cuenta que desde el origen del humanidad se ha contado con diversas formas de iluminación: desde antorchas, fogatas o velas, a tecnologías más avanzadas, como por ejemplo, lámparas de vapor de mercurio, lámparas de sodio de alta presión (HPS - High Pressure Sodium) y luces LED (Light Emitting Diode), entre otras. El uso de las luces LED no solo ha significado una revolución tecnológica en el ámbito de iluminación debido al bajo costo y fácil accesibilidad a este tipo de tecnología, sino que también trae consigo un cambio hacia el azul de la Distribución Espectral de Energía (SED - por sus siglas en inglés) de la CL producida por el ser humano. Esto último ha llevado a la comunidad científica a replantear los instrumentos y técnicas utilizadas para el estudio de la CL en la medida que se desarrolla esta transición tecnológica (Kyba, 2018; Bertolo et al. 2019).

Así, el alumbrado de exteriores que hace mal uso de las tecnologías antes mencionadas en un cierto lugar (ya sea ciudad o pueblo) provoca CL. Esto es, cuando: las luces iluminan hacia el cielo; la luz emite en longitudes de onda

¹Definición según el Departamento de Ruido, Lumínica y Olores, División de Calidad del Aire y Cambio Climático, Ministerio del Medio Ambiente, Gobierno de Chile.

tales que afectan negativamente a los seres vivos o a la observación astronómica; se ilumina de forma excesiva, por lo cual se puede dispersar una mayor cantidad de luz al cielo nocturno. También puede existir CL que provenga de otras fuentes de luz como escaparates luminosos, letreros publicitarios, o campos deportivos (Kyba et al. 2021).

Por otra parte, la CL también se origina de la popular creencia de que la luz artificial aumenta la seguridad en las calles y ayuda a reducir la delincuencia. Sin embargo, múltiples estudios muestran que la correlación entre la seguridad (ya sea crimen o accidentes) y la cantidad de alumbrado en las calles/carreteras durante la noche es aún un tema en discusión (Marchant, 2004; Marchant, 2010; Tompson et al. 2015; Welsh et al. 2008).

Como se mencionó anteriormente, la CL puede tener impactos en diversas áreas. En particular, este fenómeno puede afectar de manera negativa la biodiversidad de un ecosistema alterando los ciclos migratorios y de reproducción de insectos, anfibios, peces, aves, y muchos otros animales (Hölker et al. 2010); en las plantas el efecto de la CL significa una alteración negativa en sus procesos fisiológicos (Meravi et al. 2020), lo cual implica una amenaza a la ecología y el medio ambiente (Singhal et al. 2018).

Como ejemplo se tiene el caso de las diversas especies de aves marinas que habitan el norte de Chile (Silva, R. et al. 2020). Estas aves, que se trasladan durante la noche, se ven atraídas hacia el alumbrado público, y pueden caer al suelo, o en otros casos, las aves sobrevuelan por horas las luminarias, esto las agota progresivamente y finalmente caen al suelo (Figura 1.4); dicho fenómeno generalmente termina con resultados fatales para el individuo, lo que representa un peligro para varias subespecies de este tipo de aves.

Por otra parte, los altos niveles de CL generan diversos efectos negativos en los seres humanos. Estos son: la inhibición de la melatonina, hormona fundamental para el buen dormir, que puede provocar desórdenes en los patrones de sueño, o incluso puede llevar a trastornos del estado de ánimo y ansiedad (Paksarian et al. 2020). Como hecho aún más preocupante, la exposición a CL es un factor de riesgo para cáncer de próstata en el caso de

FIGURA 1.4: Ejemplar de Golondrina de mar negra (*Oceanodroma markhami*) que cayó al suelo producto de las luces artificiales. Fuente: Barros et al. 2019.

hombres y cáncer de mamas en el caso de mujeres (Cho et al. 2015).

Por último, pero no menos importante, la CL tiene impactos negativos en la astronomía, área altamente sensible a este fenómeno ya que la presencia de fuentes de luz artificial provoca la pérdida de la visibilidad de objetos celestes debido al aumento del **Brillo del Cielo Nocturno** (NSB - por sus siglas en inglés Night Sky Brightness) . La evidencia científica ha demostrado que el 80 % de la población mundial posee cielos contaminados lumínicamente y más de un tercio de la humanidad ha perdido la visibilidad de la Vía Láctea (Falchi et al. 2016). Más aún, los impactos de este fenómeno pueden llegar a ser devastadores para un observatorio. Un ejemplo es el Mount Wilson Observatory (Figura 1.5), ubicado a unos 30 km de la ciudad de Los Ángeles, California. Este observatorio fue el foco astronómico más importante a inicios del siglo XX, y con el pasar de los años, la ciudad de L.A. se expandió a tal punto de imposibilitar la obsevación astronómica en este lugar (Teare, 2000). De manera similar, se tiene el Observatorio Manuel Foster situado en

la ciudad capital de Chile, Santiago, que en su momento tuvo el mejor espectrógrafo del hemisferio Sur (Silva, B., 2019), y al estar ubicado dentro de la ciudad, en el año 1995 este observatorio se vio obligado a cesar sus operaciones debido a la alta cantidad de CL en el cielo de la capital.

FIGURA 1.5: Ciudad de Los Ángeles vista desde Mount Wilson en los años 1910, 1925 y 2002. Figura 2 extraída del anexo de la publicación Martínez-Ledesma et al. 2019.

En Chile se han realizado estudios sobre el NSB en diversos observatorios. Patat, 2008 estudió el NSB del Observatorio Paranal, donde encontró una correlación entre el brillo del cielo y la actividad solar. Krisciunas et al. 2007 mostró que la ciudad de La Serena genera impactos en el brillo del cielo del Observatorio Interamericano del Cerro Tololo (CTIO) a altitudes de diez grados sobre el horizonte; más adelante Krisciunas et al. 2010 encontró que los efectos de las fuentes artificiales al horizonte en CTIO no generan impactos cuantificables en el brillo del cielo al zenit. En el artículo Green et al. 2022 publicado recientemente, se indicó que el Obsevatorio Paranal y Las Campanas posee condiciones de cielos pristinos, mientras que el CTIO tiene un incremento del brillo del 6 % sobre los valores naturales. En el reciente trabajo

de tesis, Uchima-Tamayo, 2021 realizó una caracterización del brillo del cielo nocturno en varios sitios en interés, y en particular para los Observatorios Las Campanas y La Silla. También se halló que las contribuciones artificiales no afectan las mediciones astronómicas, pero sí representan una amenaza debido a que los impactos de las ciudades cercanas a los Observatorios se observaron hasta a 15° de elevación sobre el horizonte, y con el crecimiento de las ciudades estos efectos tenderían a ser mayores.

A pesar de los esfuerzos por comprender el fenómeno de la CL, aún hacen falta más estudios cuantitativos y prolongados en el tiempo que permitan un mejor entendimiento de los impactos de la CL sobre los cielos nocturnos de la Cuarta Región. En el año 2019 se forjó una alianza colaborativa entre la Universidad de La Serena (ULS) y la Oficina de Protección de la Calidad del Cielo del Norte de Chile (OPCC-AURA). El nombre que recibe esta organización es "Grupo de Investigación para el Cuidado del Cielo Nocturno ULS-OPCC-NOIRLab", y tiene como objetivos: estudiar y documentar cuantitativamente el fenómeno de CL en lugares de relevancia astro turística en la Región de Coquimbo; y proponer acciones para mitigar el desarrollo de este fenómeno.

Fruto de esta alianza colaborativa surge este trabajo de tesis que apunta a la realización del primer estudio cuantitativo y sistemático de la calidad de cielos nocturnos de la Región de Coquimbo.

Finalmente, en esta investigación se proponen los siguientes objetivos específicos:

- Refinar la metodología para el estudio de la CL mediante el uso de cámaras réflex digitales modificadas vista en Uchima-Tamayo, 2021.
- Comparar cuantitativamente el brillo del cielo en diferentes lugares de estudio elegidos estratégicamente.
- Documentar la evolución de la contaminación lumínica en cada lugar de estudio.

■ Dar a conocer los resultados del trabajo a los organismos encargados de tomar decisiones (i.e., municipalidades, gobernadores, seremis, entre otros) para tomar acciones concretas de manera informada con el fin de controlar los impactos de la CL en el cielo nocturno de la Cuarta Región.

Capítulo 2

¿Cómo se mide la luz?

La luz es la parte del espectro electromagnético que corresponde al rango de la *radiación visible* (definición de acuerdo a la Comisión Internacional de la Iluminación - CIE por sus siglas en inglés), y es que, esta parte de la radiación produce lo que conocemos como *sensación visual* en los seres humanos. A través de la *sensación visual* se interpretan los estímulos del exterior mediante el sentido de la vista, donde los fotorreceptores (conos y bastones) del sistema visual humano son los encargados de captar luz. Se entiende como *radiación visible* la parte del espectro electromagnético que se encuentra en el rango de longitud de onda entre 360 *nm* y 760 *nm*. Para entender la *radiación visible* es necesario conocer algunos conceptos radiométricos y fotométricos que se explican en el presente capítulo, adaptados a partir del trabajo de Ashdown, 1996.

La **radiometría** es la ciencia encargada de medir la radiación electromagnética, mientras que la **fotometría** centra su estudio en la parte del espectro electromagnético que es capaz de ver el ser humano. La unidad de medida más común en radiometría es el *Watt* (*W*), que mide el flujo radiante, mientras que en el contexto de fotometría la unidad más común es el *lumen* (*lm*), que mide el flujo luminoso.

2.1. Conceptos Radiométricos

2.1.1. Ángulo sólido

Consideremos un ángulo plano, donde una revolución completa equivale a 360° o 2π radianes. El **ángulo sólido** expande este concepto sobre la superficie de una esfera. El ángulo sólido (Figura 2.1), visto desde el centro de una esfera, incluye un área determinada en la superficie de esa esfera. El valor del ángulo sólido es numéricamente igual al tamaño de esa área dividido por el cuadrado del radio de la esfera y está definido por

$$\Omega = \frac{S}{R^2}$$

donde Ω corresponde al ángulo sólido, S corresponde al área determinada en la superficie de la esfera y R es el radio de la misma.

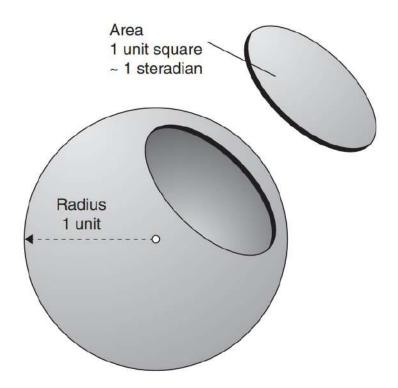


FIGURA 2.1: Concepto de ángulo sólido. Chowdhury, 2014.

El ángulo sólido es una magnitud adimensional, pero, por practicidad se

mide en *estereorradián* (sr). Esta unidad de medida es la utilizada en el Sistema Internacional de Unidades (SI). Otra unidad de medida utilizada para el ángulo sólido son los grados cuadrados (o)². De manera similar a los grados que se utilizan para medir partes de un círculo, los grados cuadrados se utilizan para medir partes de una esfera.

2.1.2. Energía radiante

La radiación electromagnética transporta energía a través del espacio. Cuando la luz es absorbida por un cuerpo, su energía se transforma. El Sol, por ejemplo, nos proporciona energía en forma de luz, la cual utilizan las plantas para producir oxígeno, elemento esencial para la vida en la Tierra. En este caso, la energía radiante del Sol se transforma en energía química.

La energía radiante depende de la intensidad de luz y del color de la onda electromagnética. La unidad de medida para la energía radiante (denotada como Q) es el Joule. La unidad Joule está derivada de unidades básicas del S.I. y dimensionalmente la equivalencia es 1 $J = kg m^2/s^2$. Esta unidad de medida también se utiliza para cuantificar trabajo y calor.

2.1.3. Flujo/Potencia radiante

El **flujo** o **potencia radiante** es la energía radiante transferida por unidad de tiempo y se mide en *julios por segundo*, que a su vez se define como *Watt*. La luz "fluye" a través del espacio, por lo que la potencia radiante se conoce más comúnmente como la tasa temporal de flujo de energía radiante, o flujo radiante. Esta magnitud se define como:

$$\Phi = \frac{dQ}{dt} \tag{2.1}$$

donde Φ es el flujo radiante, Q es energía radiante y t el tiempo.

El flujo de luz a través del espacio a menudo se representa mediante rayos de luz geométricos (Figura 2.2). Pueden considerarse como líneas infinitesimalmente delgadas dibujadas a través del espacio, que indican la dirección del flujo de energía radiante (luz).

2.1.4. Intensidad radiante

Una fuente puntual de luz infinitesimalmente pequeña puede emitir un flujo radiante en todas direcciones. Luego, la **intensidad radiante** se define como la cantidad de flujo radiante emitido en una dirección determinada. Se puede representar mediante un rayo de luz contenido en un cono elemental:

$$I = \frac{d\Phi}{d\Omega} \tag{2.2}$$

donde I corresponde a la intensidad radiante, $d\Omega$ es el ángulo sólido diferencial del cono elemental que contiene la dirección dada y Φ es el flujo radiante.

La unidad de medida de la intensidad radiante es $W sr^{-1}$ en el SI.

2.1.5. Densidad de flujo radiante (Irradiancia/Exitancia radiante)

La **densidad de flujo radiante** es el flujo radiante por unidad de área en un punto de una superficie. La densidad de flujo radiante se mide en *Watt* por metro cuadrado ($W m^{-2}$) en el SI.

Cuando el flujo llega a la superficie, la densidad del flujo radiante se denomina **irradiancia**. La irradiancia se define como:

$$E = \frac{d\Phi}{dA} \tag{2.3}$$

donde E es la irradiancia y Φ es el flujo radiante que llega al área infinitesimal dA.

La unidad de medida para la irradiancia en el SI es el Watt por metro cuadrado (W m^{-2}).

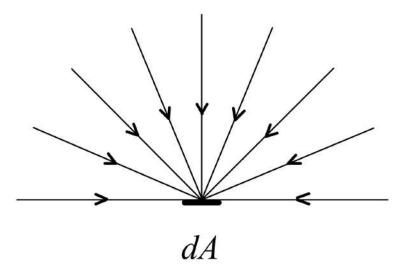


FIGURA 2.2: Líneas de flujo radiante llegando a una superfie infinitesimal (irradiancia). Ashdown, 1996.

Cuando el flujo sale de la superficie debido a efectos de emisión o reflexión, la densidad de flujo radiante se denomina **exitancia**. La exitancia se define como:

$$M = \frac{d\Phi}{dA} \tag{2.4}$$

donde Φ es el flujo radiante que sale del área infinitesimal dA.

Al igual que la irradiancia, la exitancia radiante se mide en $W m^{-2}$.

2.1.6. Radiancia

Consideremos un rayo de luz que llega o sale de un punto de una superficie en una dirección determinada. La **radiancia** en este caso sería simplemente la cantidad de flujo radiante contenido en este rayo (considerando también un cono de ángulo sólido $d\Omega$). Si el rayo corta una superficie en un ángulo θ con la normal a esa superficie, y el área de intersección con la superficie tiene un área de sección transversal infinitesimal dA, el área de la sección transversal del rayo es $dA \cos \theta$ (Figura 2.3). Luego, la radiancia se define como:

$$L = \frac{d^2\Phi}{dAd\Omega\cos\theta} \tag{2.5}$$

donde L corresponde a la radiancia medida en la dirección θ , Φ es el flujo radiante emitido, θ es el ángulo entre la normal de la superficie y la dirección dada, A es el área de la superficie y Ω es el ángulo sólido subtendido.

La radiancia se mide en *Watt por metro cuadrado por estereorradián* ($W m^{-2} sr^{-1}$). Estas unidades son las utilizadas en el SI.

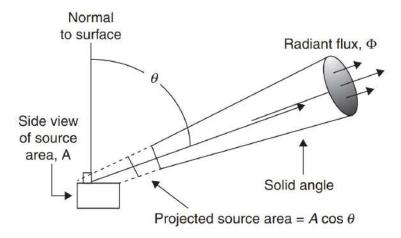


FIGURA 2.3: Concepto de radiancia. Chowdhury, 2014.

2.2. Conceptos fotométricos

2.2.1. Flujo luminoso

El **flujo luminoso** es la cantidad de luz emitida por una fuente de luz en todas las direcciones (Figura 2.4), a diferencia de la intensidad luminosa que mide la cantidad de luz emitida en una cierta dirección.

Su unidad de medida en el SI es el *lumen (lm)* y se define como el flujo luminoso producido por una fuente de luz que emite 1 *cd* de intensidad luminosa sobre un ángulo sólido de 1 *sr*. Su equivalencia radiométrica corresponde al Flujo/Potencia radiante.

2.2.2. Intensidad luminosa

La **intensidad luminosa** mide la cantidad de luz proveniente de una fuente puntual contenida en un ángulo sólido de un estereorradián. Cabe destacar

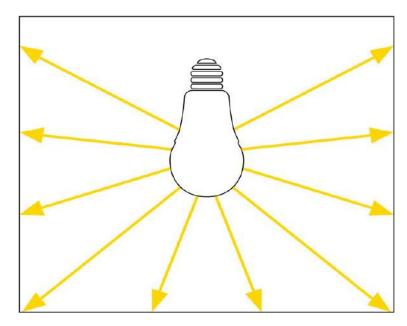


FIGURA 2.4: Flujo Luminoso. Zumtobel, 2018.

que esta medición se hace desde la fuente de luz y además, se mide en una dirección en particular (Figura 2.5).

El concepto de Intensidad luminosa usualmente se refiere a qué tan "brillante" parece una fuente de luz. Su unidad de medida en el SI es la candela (cd), y como el nombre sugiere, originalmente se basó en el brillo de una vela común y corriente. Tiene como equivalencia radiométrica a la Intensidad radiante.

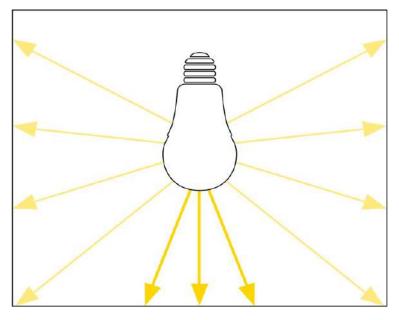


FIGURA 2.5: Intensidad Luminosa. Zumtobel, 2018.

2.2.3. Iluminancia

La **iluminancia** se define como el flujo luminoso por unidad de área que incide sobre una superficie (Figura 2.6). Debido a que es una medida de la fuente de luz, la iluminancia es independiente del tipo de superficie.

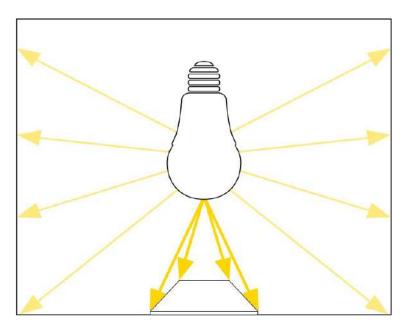


FIGURA 2.6: Iluminancia. Zumtobel, 2018.

La unidad de medida para la iluminancia en el SI es el *lumen por metro cuadrado* (lm/m^2). Otra unidad de medida utilizada para expresar la iluminancia es el lux, donde 1 lux = 1 $lumen/m^2$. En radiometría este concepto corresponde a la Irradiancia.

2.2.4. Luminancia

La luminancia es una medida fotométrica de la intensidad luminosa por unidad de área de luz que viaja en una dirección determinada. Describe la cantidad de luz que atraviesa o se emite desde un área en particular y cae dentro de un ángulo sólido dado (Figura 2.7), y por consiguiente, no se describe la cantidad de luz proveniente directamente desde la fuente. En el contexto de fotometría, el "brillo" también se utiliza como sinónimo de luminancia para describir la percepción del ojo humano al observar la luz proveniente de un área en particular.

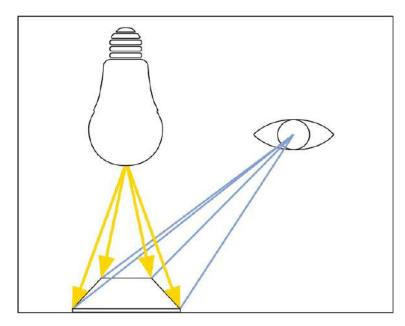


FIGURA 2.7: Luminancia. Zumtobel, 2018.

Es una medida aproximada de cuán "brillante" aparece una superficie cuando la vemos desde una dirección determinada, y por tanto, también depende de las propiedades reflectantes de la superficie. Su unidad de medida en el SI es el lumen por metro cuadrado por estereorradián $(lm/m^2/sr)$ o equivalentemente cd/m^2 . La equivalencia radiométrica para la Luminancia es la Radiancia.

La luminancia se mide a partir de fotómetros, instrumentos que están especialmente diseñados para que su respuesta espectral coincida con una curva de respuesta teórica simplificada para el sistema visual humano. Cuando la respuesta espectral se adapta perfectamente a la visión humana, las mediciones de estos instrumentos se denominan luminancia (Hänel et al. 2018).

El ojo humano capta la luz gracias a una capa de fotorreceptores ubicada en la retina que convierte la luz en señales cerebrales. En esta capa se encuentran las células fotorreceptoras conocidas como conos y bastones. La curva de respuesta del ojo humano varía según el nivel de luz presente. Durante el día, la respuesta espectral del ojo está dominada por los conos, siendo establecida por Smith et al. 1931 como la curva $V(\lambda)$, también conocida como **visión fotópica**. En condiciones de poca luz, la visión está dominada por los bastones, y la curva de respuesta espectral se conoce como **visión escotópica**

2.3. Brillo del cielo 19

(Judd, 1951). En condiciones de luz intermedia, se involucran conos y bastones, y la curva de respuesta se conoce como **visión mesópica** (Rea et al. 2004; Eloholma et al. 2006).

En la tabla 2.1 se muestran las magnitudes radiométricas y sus respectivas equivalencias en términos de magnitudes fotométricas.

TABLA 2.1: Resumen de las magnitudes radiométricas y fotométricas equivalentes y sus unidades.

Radiometría	Unidad	Fotometría	Unidad
Flujo/Potencia radiante	Watt (W)	Flujo luminoso	Lumen (lm)
Intensidad radiante	W / sr	Intensidad lu- minosa	Candela (cd)
Irradiancia	W/m^2	Iluminancia	$Lux (lm / m^2)$
Radiancia	$W/m^2/\mathrm{sr}$	Luminancia	cd / m^2

2.3. Brillo del cielo

En el ámbito astronómico, el brillo del cielo, radiancia del cielo o "Sky Brightness" se mide en *magnitud por arcosegundo cuadrado* ($mag/arcsec^2$). Con esta unidad de medida se entiende que si cierta área de cielo contuviera una estrella de magnitud¹ X en cada arcosegundo cuadrado a lo largo de toda la bóveda celeste, el brillo del cielo sería X $mag/arcsec^2$. Cabe destacar que valores mayores de Sky Brightness indican cielos más oscuros.

Cuando se mide el brillo del cielo, es importante aclarar si esta cantidad se mide en las áreas entre las estrellas visibles ("brillo de fondo del cielo") o

¹En astronomía, la *magnitud* da cuenta del brillo de una estrella. El astrónomo Hiparco de Nicea estableció una convención para medir el brillo de una estrella, quién asignó una magnitud de 1 para las estrellas más brillantes vistas a ojo desnudo, y una magnitud 6 para las estrellas más débiles. Esta clasificación fue modificada en el siglo XIX por el astrónomo inglés Norman Pogson, donde dicho astrónomo propuso que un decremento en la escala de magnitud representa una disminución del brillo igual a la raíz quinta de 100.

si se incluye la luz de las estrellas ("brillo del cielo"). La irradiancia siempre incluye todas las fuentes de luz (Hänel et al. 2018).

La radiancia puede ser medida en diferentes rangos de longitud de onda. De manera similar a los sistemas de visión humana, en Johnson et al. 1953 se definió el primer sistema fotométrico astronómico para medir el brillo del cielo, más conocido como "sistema UBV', con los filtros ultravioleta (U), azul (B) y verde (visual = V). La banda espectral V verde no es muy diferente con respecto a la visión fotópica, por lo que se puede hacer una transformación entre los valores de brillo astronómico en mag / arcsec² y la luminancia en cd/m² (Bará, 2016):

$$b[cd/m^2] = 10.8 \times 10^4 \times 10^{-0.4m_V[mag/arcsec^2]}$$
 (2.6)

Con b la luminancia y m_V el brillo del cielo en la banda V.

2.4. Temperatura de Color Correlacionada (CCT)

La **Temperatura de Color Correlacionada** (CCT - por sus siglas en inglés Correlated Color Temperature) describe la temperatura de una fuente térmica que más se asemeja al espectro de color de la luz observada.

La unidad de medida para el CCT son los grados Kelvin (*K*) y puede variar entre 1,000*K* y 10,000*K*, dependiendo de la naturaleza de la fuente (artificial o natural). Cuanto más alto es el CCT, más frío/azulado es el tono de la fuente de luz. De manera análoga, un valor de CCT más bajo está asociado a un tono de luz más cálido/amarillento. Sin embargo, esta convención puede resultar confusa para muchas personas porque cuanto mayor es el CCT de la lámpara, más *"fría"* aparece la luz, lo cual puede ser contraintuitivo.

En la industria de la iluminación se entiende por color blanco cálido un CCT de 3,000 K, a un color blanco corresponde un CCT de 3,500 K, blanco frío entre 4,000 K - 4,500 K y como referencia, la luz diurna tiene un CCT de

6,500 *K*. En la Figura 2.8 se representan por colores las distintas fuentes de luz con sus respectivos valores de CCT.

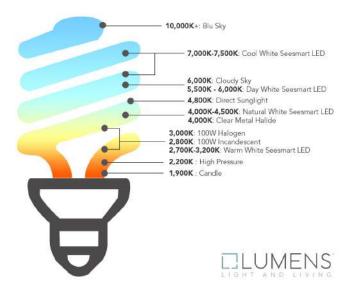


FIGURA 2.8: En la ilustración están ordenados los valores de CCT para los distintos tipos de tecnologías de iluminación, dando también una referencia del tono de color que representan. Fuente: lumens.com.

Capítulo 3

El Brillo del Cielo Nocturno

Aún en una noche despejada y sin luna, el cielo que vemos no es completamente oscuro. Incluso en los lugares más desolados del planeta el cielo tiene una radiancia producida tanto por componentes de origen natural terrestre o extraterrestre, como por componentes artificiales resultado de la actividad humana. Dichas contribuciones tienen un cierto aporte al Brillo del Cielo Nocturno (**NSB** - por sus siglas en inglés Night Sky Brightness - véase también la Sección 2.3).

A la hora de estudiar el NSB también se deben tener en cuenta las condiciones meteorológicas como temperatura, humedad, y en particular, las nubes, ya que éstas pueden tener un fuerte efecto sobre el NSB. En las áreas urbanas, las nubes pueden actuar como un factor amplificador de la luz artificial proveniente de las fuentes (Jechow et al. 2020; Ściężor, 2020), aumentando el NSB del lugar en más de un orden de magnitud, mientras que en áreas naturales libres de luz artificial, las nubes actúan como factor atenuador (Jechow et al. 2019b), oscureciendo el cielo. (Ribas et al. 2016; Kyba et al. 2015). Asimismo, el lugar geográfico (para el caso de observaciones desde la Tierra), la época del año y la hora en que se realiza un estudio también es relevante, ya el aporte al NSB de las componentes naturales puede variar según los tres parámetros antes mencionados.

3.1. Fuentes naturales

3.1.1. Airglow

El **Airglow** es el "resplandor" natural de la atmósfera de la Tierra. Sucede todo el tiempo y en todo el mundo. Se pueden considerar tres tipos de Airglow: dayglow, twilightglow y nightglow. Cada uno de estos fenómenos se origina de la interacción de la luz solar con las moléculas de la atmósfera superior (Figura 3.1). Dichas interacciones ocurren desde la mesopausa (parte superior de la mesósfera, que determina el límite entre ésta y la termósfera) a 90 km de altitud sobre el nivel del mar, hasta la ionósfera, que se encuentra a 270 km (Noll et al. 2012).

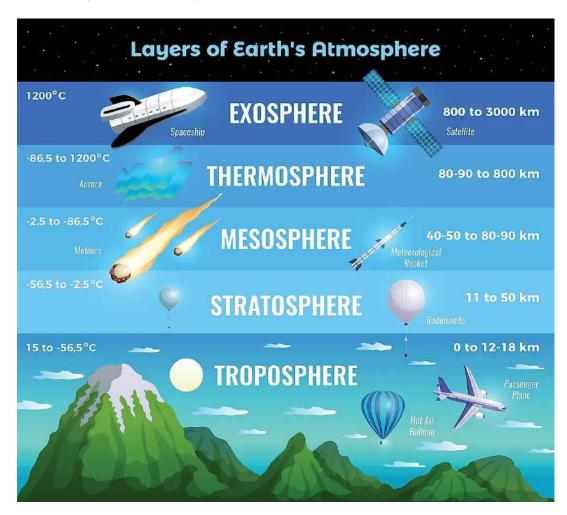


FIGURA 3.1: Capas de la atmósfera en función de la altitud. Fuente: WorldAtlas.

En el libro de Roach et al. 1973 se identificaron cuatro explicaciones físicas para el Airglow, las cuales son: reacciones químicas de los componentes neutros de la atmósfera superior que dan como resultado la emisión de luz; reacciones de componentes ionizados que también dan como resultado una emisión de luz; excitación de los componentes atmosféricos que no están a la sombra de la Tierra por la luz solar; y excitación por partículas cargadas energéticas entrantes guiadas a lo largo de las líneas geomagnéticas de la Tierra. Las dos primeras causas del Airglow siempre están presentes y contribuyen al NSB para todos los observadores terrestres. La tercera es sólo observable desde cohetes y satélites, ya que gran parte de su radiación se encuentra en los rayos ultravioleta y no logra penetrar la atmósfera de la Tierra hasta su superficie. La cuarta causa es lo que se conoce como Aurora Polar, que tiende a ocurrir en zonas a unos 20° o 25° de los polos geomagnéticos. La presencia de las Auroras Polares tiene una fuerte dependencia con el ciclo de las manchas solares.

Para efectos de este trabajo es de mayor interés el Nightglow o Luminiscencia Nocturna, el cual hace que durante la noche la Tierra se vea envuelta por una capa de color naranja como la que se muestra en la Figura 3.2a. Este fenómeno se produce debido a quimiolumiscencia, esto es, cuando la energía liberada en ciertas reacciones químicas no sólo es calor o energia química, sino que también se libera o emite luz por la desintegración de estados electrónicos excitados de los productos de la reacción. En este caso la quimioluminiscencia es provocada por la radiación solar de alta energía. Como se mencionó anteriormente, las reacciones químicas se pueden originar en la mesopausa, donde se concentran emisiones fuertes de OI y OH, junto a emisiones más débiles de O₂ y NaD (Masana et al. 2020). El Nightglow varía tanto en intensidad, espectro y distribución en escalas de tiempo desde minutos a décadas (Roach et al. 1973). El Nightglow también puede variar dependiendo de la ubicación geográfica del observador. Por último, el Nightglow presenta variaciones estacionales y también con el ciclo de manchas solares (Takahashi et al. 1984; Krisciunas, 1997; Patat, 2008).

(A) Fotografía de la Tierra tomada desde la Estación Espacial Internacional. Se puede apreciar el Nightglow como una capa naranja sobre la superficie del planeta. Fuente: NASA.

(B) Nightglow sobre el telescopio VLT. En la imagen se puede apreciar que el cielo presenta tonos de colores naranjas y verdosos debido a este fenómeno. Fuente: ESO.

FIGURA 3.2: Fenómeno Nightglow

3.1.2. Luz Zodiacal

La Luz Zodiacal es la contribución al NSB producto de la luz solar dispersada por las partículas de polvo interplanetario. Este fenómeno se puede observar en las regiones ultravioleta, visual e infrarroja cercana del espectro electromagnético. Dado que estas partículas de polvo se distribuyen en el plano del sistema solar, existen dos lugares a lo largo de la eclíptica donde los valores de radiancia de la Luz Zodiacal son mayores: uno en la dirección al Sol, y otro en el punto antisolar (dirección contraria al Sol). La radiancia proveniente del punto antisolar se denomina Gegenschein. La Luz Zodiacal tiene un color blanquecino en la banda visual (Figura 3.3) y se hace más visible hacia la dirección oeste después del crepúsculo y hacia el este antes del amanecer. La contribución al cielo nocturno de la Luz Zodiacal depende de la posición del observador y de la época del año (Leinert et al. 1998).

FIGURA 3.3: Al centro de la imagen se aprecia una luz blanquecina con forma triangular, correspondiente a Luz Zodiacal, vista desde el Volcán Teide, España. Fuente: Daniel López.

¹La eclíptica corresponde al camino aparente seguido por el Sol sobre la esfera celeste a lo largo de un año, visto desde la Tierra.

3.1.3. Luz Estelar Integrada

En el rango de longitud de onda visual, la Luz Estelar Integrada (IS - por sus siglas en inglés Integrated Starlight) es uno de los contribuyentes más importantes al NSB. Esta contribución se origina de la luz combinada de estrellas no resueltas de la Vía Láctea. En la región ultravioleta la IS está dominada por estrellas calientes y enanas blancas, en la longitud de onda visual la contribución de la IS está dominada por estrellas de secuencia principal, y en el infrarrojo medio se tiene una contribución dominada por estrellas gigantes rojas (Leinert et al. 1998; Mathis et al. 1983). La contribución de la IS al NSB depende de las capacidades del instrumento para resolver las estrellas más brillantes, y también depende de la latitud galáctica en que se encuentre la estrella (Leinert et al. 1998).

3.1.4. Luz Galáctica Difusa

La Luz Galáctica Gifusa (**DGL** - por sus siglas en inglés Diffuse Galactic Light) es la componente difusa de la radiacion de fondo galáctica producida por la dispersión de la luz de las estrellas en los granos de polvo que se encuentran en el medio interestelar. La DGL aporta entre el 20 % y el 30 % de la luz total integrada de la Vía Láctea (Leinert et al. 1998). Esta componente es difícil de estudiar, ya que está mezclada con la luz proveniente de las estrellas no resueltas (IS), Airglow y Luz Zodiacal (Masana et al. 2020). Existen diversas formas para estimar la DGL, entre las que se encuentran el uso de la relación entre las intensidades de IS y DGL en una línea de visión dada (Leinert et al. 1998), ó el uso de la relación entre la emisión difusa del polvo a 100µm y su emisión en longitud de onda visible (Masana et al. 2020).

3.1.5. Luz de Fondo Extragaláctica

La Luz de Fondo Extragaláctica (**EBL** - por sus siglas en inglés Extragalactic Background Light) es la contribución al NSB de todas las fuentes extragalácticas, principalmente de galaxias resueltas, no resueltas y material intergaláctico (Masana et al. 2020). La contribución al NSB de la EBL es del orden del 0.2 %, y debido a su baja intensidad, es difícil cuantificarla ya que se ve mezclada por la Luz Zodiacal y Airglow, cuyas contribuciones son mucho mayores. La EBG se puede derivar a partir de modelos sobre recuento de galaxias (Driver et al. 2016).

En la Tabla 3.1 se muestra un resumen con el aporte porcentual al NSB de las fuentes naturales revisadas en esta sección.

TABLA 3.1: Contribuciones naturales medias al NSB cenital para una latitud geográfica igual a 40° N. Valores obtenidos a partir del modelo GAMBONS (Masana et al. 2020).

Fuente Natural	Radiancia (nWm ⁻² sr ⁻¹)	Porcentaje al zenit
Airglow	165	47.7
Luz Zodiacal	95	27.5
Luz Estelar Integrada	75	21.7
Luz Galáctica Difusa	10	2.9
Luz de Fondo Extragaláctica	0.8	≈ 0.2

3.2. Fuentes artificiales

En la mayoría de los lugares del planeta, la contribución de la luz artificial supera a la contribuciones de origen natural (Narisada et al. 2004). El uso inapropiado o excesivo de luz artificial se conoce como **Contaminación Lumínica**². Gallaway, 2010 define la CL como "Las consecuencias no deseadas de la iluminación artificial mal diseñada y utilizada de manera imprudente", y como se mencionó en el Capítulo 1, genera impactos en diversas áreas como la biodiversidad, el ser humano y la astronomía.

²Definición según la IDA.

3.2.1. Tipos de CL

Lo que todas las definiciones anteriores de la CL tienen en común, es el objetivo de establecer una base sobre la cual se puedan clasificar los efectos negativos de la CL (Stone, 2017). Por ello, la definición de Gallaway es la más acertada en el sentido en que entrega la posibilidad de considerar una serie más amplia de preocupaciones producto de este fenómeno: la definición de la CL por Gallaway no quiere decir que cualquier uso de iluminación nocturna por el ser humano está mal, sino que da la posibilidad de evidenciar ciertos aspectos negativos o no deseados de la iluminación nocturna, los cuales se pueden subdividir en cuatro categorías: sky glow, glare, light trespass y clutter. Estas tres últimas categorías se experimentan con más frecuencia en la vida cotidiana.

3.2.1.1. Sky glow

Incluso si la infraestructura de las luminarias nocturnas están bien colocadas, bien ajustadas y bien protegidas, dirigen parte de su luz hacia arriba o bien puede ser reflejada en las superficies y finalmente dispersada en la atmósfera hacia la superficie de la Tierra. El resultado es lo que se conoce comúnmente como "sky glow": una neblina difusa que se extiende sobre el cielo, haciendo que aumente el NSB que se tendría de manera natural y también provocando una disminución en la visibilidad de objetos astronómicos (Narisada et al. 2004). Esta neblina se caracteriza por tener tonos de colores naranjas, blanquecinos y azulados dependendiendo del tipo de luminarias, y a menudo se puede observar sobre las grandes ciudades (Figura 3.4).

Sin embargo, no toda la luz que se dirige hacia arriba se refleja directamente hacia abajo. También se dispersa en direcciones casi horizontales y puede llegar a recorrer grandes distancias. Vista desde lejos, la luz dispersa parece una "mancha de luz" sobre la fuente (como por ejemplo, la luz emitida por una ciudad). Como la mancha es el resultado de la luz emitida casi verticalmente hacia arriba y dispersada en la atmósfera, no puede ser mayor

FIGURA 3.4: Fenómeno de sky glow sobre la ciudad de Coquimbo durante la noche. Fuente: Destinos en Chile.

que el espesor de la atmósfera. El valor típico de este espesor es unos 8 km (donde la presión atmosférica y la cantidad de aerosoles son demasiado bajas como para causar una dispersión significativa), la elevación sobre el horizonte de la mancha vista a una distancia de 50 km será de 9 grados, y alcanza los 5 grados vista a una distancia de 100 km (Narisada et al. 2004).

El sky glow se produce debido a la interacción entre la luz (luz solar en el caso de sky glow natural) y las moléculas presentes en la atmósfera. Existen dos tipos de dispersión dependiendo del tamaño de las moléculas con las que interactúa la luz. Cuando el tamaño de las moléculas es menor a la décima parte de la longitud de onda (se puede tomar como referencia una longitud de onda de 500 nm para la luz solar que ingresa a la atmósfera) la dispersión se denomina dispersión de Rayleigh o "Rayleigh scattering". Este fenómeno se origina de la dispersión de la luz en moléculas de N_2 y O_2 y tiene una dependencia inversa a la cuarta potencia de la longitud de onda (λ^{-4}) (Rayleigh, 1899), por lo que si consideramos una emisión de 450 nm y una emisión de 700 nm, la emisión en la parte azul del espectro tendrá una dispersión 5.8 veces mayor que la emisión en la parte roja del espectro. Esta

dispersión también es responsable del color azul del cielo durante el día. Por otra parte, cuando el tamaño de las moléculas en la atmósfera es del orden de la longitud de onda, se produce lo que se denomina dispersión de Mie o "Mie scattering" (Nave, 2017), la cual es responsable de fenómenos naturales como los halos solares, o el color blanco de la niebla.

El sky glow también se puede explicar a través de la dispersión de aerosoles (Hinds, 1999), que son partículas microscópicas sólidas o líquidas que se encuentran en suspensión en un gas (por ejemplo, el aire). Los aerosoles pueden ser naturales (por ejemplo, niebla, nubes, vapor de géiser) o antropogénicos (partículas contaminantes provenientes de la quema de combustibles, centrales termoeléctricas y en general la actividad industrial). Cuantos más aerosoles hay en el aire durante el día, el cielo pierde su color azul y se torna de color blanquecino. En las áreas urbanas predomina este tipo de dispersión, debido a la alta presencia de aerosoles antropogénicos.

3.2.1.2. Light intrusion

Un buen diseño de iluminación asegura que la luz llegue donde se necesita y no en un lugar indeseado. Cuando existe un mal diseño de iluminación, la luz se "malgasta" provocando el efecto de "light intrusion", en el cual la luz malgastada se propaga a espacios no deseados (por ejemplo, la luz que entra por la ventana de un dormitorio por la noche). Este desperdicio de luz puede llegar a causar considerables pérdidas económicas (Tsao et al. 2010; Isobe et al. 2000) y ambientales (Hölker et al. 2010). Este fenómeno acarrea consigo distintos grupos de "víctimas", siendo los dos grupos más importantes las personas residentes en una vivienda afectada por light intrusion y los astrónomos (Narisada et al. 2004). Las personas residentes sufren más cuando la luz invade su vida privada, ya que ésta cae directamente en su espacio vital. En muchos casos, se relaciona con la luz que entra en los dormitorios, pero también con la luz que entra en las salas de estar o los jardines privados.

3.2.1.3. Glare

El glare o deslumbramiento es una sensación visual provocada por un brillo excesivo y descontrolado. Puede ser incapacitante o simplemente incómodo. Es subjetivo y la sensibilidad al deslumbramiento puede variar ampliamente. Las personas mayores suelen verse más afectadas por el deslumbramiento debido a cómo envejece el ojo humano. Mizon, 2012 organizó el glare en 3 categorías, siendo la descrita anteriormente la correspondiente a "discomfort glare" (Figura 3.5). Por otra parte, se tiene el "blinding glare" que es causado por mirar fijamente al Sol y puede ocasionar problemas visuales temporales o permanentes. En la tercera categoría se encuentra el "disability glare", que es causado por las luces de un automóvil que se aproxima, o la luz que se dispersa en la niebla o en el ojo, lo que reduce el contraste, perjudicando significativamente la capacidad de visión.

3.2.1.4. Clutter

El fenómeno de "clutter" corresponde a los efectos que producen una agrupación de luces que parecen generar colectivamente demasiada luz durante la noche. Su causa es debido a que estos grupos de fuentes de luz poseen una sobreiluminación. Este tipo de iluminación pertenece principalmente al alumbrado público, aunque también pueden ser letreros publicitarios (Figura 3.6).

3.2.2. Tecnologías de iluminación

El ser humano ha desarrollado distintas tecnologías de iluminación o lámparas a lo largo de la historia, utilizando distintos fénomenos físicos para la producción de luz. A continuación se describen los distintos tipos de lámparas más importantes actualmente según el mecanismo de generación de luz (Zumtobel, 2018).

FIGURA 3.5: Ejemplo práctico del fenómeno de discomfort glare en las luminarias públicas instaladas en Tambillos (lugar de residencia del autor de esta tesis), un pueblo de la Región de Coquimbo.

FIGURA 3.6: Ejemplo práctico de clutter. Fuente: Online Marketing Muscle.

3.2.2.1. Radiación Térmica

Algunas lámparas utilizan el fenómeno de "termorradiación", donde la emisión de energía se produce aumentando la temperatura de un cuerpo.

La principal exponente de este tipo de lámparas son las halógenas incandescentes. En estas lámparas la corriente fluye a través de un filamento y lo calienta exactamente de la misma manera que en una lámpara incandescente. Es por eso que estas lámparas liberan cantidades relativamente grandes de calor. El halógeno aumenta la eficiencia y prolonga la vida útil de estas lámparas en comparación con las lámparas incandescentes convencionales.

3.2.2.2. Descarga

También existen las "lámparas de descarga" que generan luz mediante una corriente eléctrica que pasa a través de un gas. Se pueden subdividir en lámparas de descarga de baja presión (LID - por sus siglas en inglés, Low Intensity Discharge) y lámparas de descarga de alta presión (HID - por sus siglas en inglés, High Intensity Discharge), entre otras.

Las lámparas fluorecentes, pertenecientes al grupo LID, funcionan creando un campo eléctrico alterno entre dos electrodos en un tubo de descarga, produciendo radiación UV invisible. El revestimiento fluorescente blanco del tubo convierte esta radiación en luz visible de alta calidad.

Dentro de las lámparas del tipo HID se tienen las de halogenuros metálicos, donde básicamente se agregan yoduros metálicos al tubo de descarga (sodio, talio, indio...), con lo cual se consigue una mejora considerable en la capacidad de reproducir colores. Cada una de estas sustancias aporta nuevas líneas al espectro (por ejemplo, el sodio produce color amarillo, el talio produce color verde, y el indio produce color rojo y azul). Algunos ejemplos de para estos tipos de lámparas son las vapor de mercurio, haluros metálicos, sodio de baja presión (LPS - Low-pressure sodium), sodio de alta presión (HPS - High-Pressure Sodium).

Las lámparas de sodio de alta presión producen la luz combinando vapor de mercurio y sodio, siendo la radiación del sodio la predominante en la emisión espectral. Son una de las tecnologías de iluminación más eficientes, y el color de la luz que producen es amarillento. Este tipo de lámparas tienen muchos usos posibles tanto en iluminación de interiores como de exteriores. En Chile, y en particular en la ciudad de La Serena el alumbrado público esta conformado mayoritariamente por lámparas HPS (ver Figura 3.7).

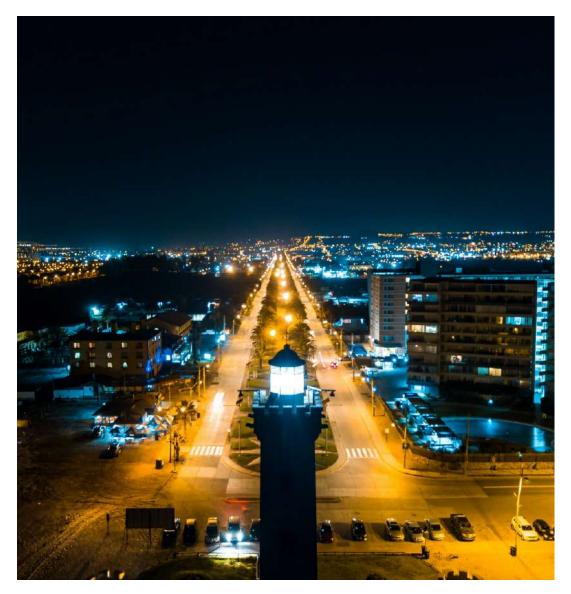


FIGURA 3.7: Faro de la ciudad de La Serena, capital de la Región de Coquimbo. La iluminación pública está conformada por lámparas HPS que en la imagen se perciben por luces con colores naranjas, mientras que también se pueden observar luces con colores blanquecinos/azulados, provenientes de el alumbrado privado. Fuente: Usuario de Instagram, fotoalex.cl.

3.2.2.3. Electroluminiscencia

Finalmente, hay fuentes de luz artificial que utilizan el fenómeno de "electroluminiscencia", en el cual se produce luz exponiendo materiales semiconductores a una corriente eléctrica.

En esta categoría están las luces LED (Light Emitting Diode), en las cuales los diodos emisores de luz son semiconductores. Sus características están determinadas por sus materiales, diseño mecánico y modo de funcionamiento. La capa de semiconductores, en la que se produce la radiación, se intercala entre un sustrato positivo y negativo dentro del LED. Producen luz en una amplia gama de colores, dependiendo de los materiales que se elijan. La larga vida útil de las LED, de más de 10,000 horas exige una gestión térmica optimizada para evitar el sobrecalentamiento. Hoy en día, las LED ya son algunas de las fuentes de luz más eficientes para la iluminación general y están reemplazando completamente a las fuentes de luz tradicionales en muchas aplicaciones.

En la Figura 3.8 se muestra la emisión espectral de nueve tipos de tecnologías de iluminación por colores las distintas fuentes de luz con sus respectivos valores de CCT.

Sin embargo, la transición a tecnologías LED representa un problema para la astronomía ya que las emisiones espectrales de las tecnologías LED son de amplio espectro, es decir, cubren tanto la parte azul como la parte roja del espectro visual. Las luces LED, si bien tienen una emisión similar en la parte roja del espectro con respecto a lámparas tipo HPS o LPS, presentan una emisión mucho mayor en la parte azul del espectro visible. Los impactos de los distintos tipos de lámparas se cuantifican en Luginbuhl et al. 2014 separando el espectro en dos tramos: $\lambda 350$ —500 nm y $\lambda 500$ —-650 nm.

Tomándo las lámparas HPS como comparación, en el panel izquierdo de la Figura 3.9 se ve que los LED blancos aumentan la radiación en la parte azul del espectro en factor de dos o más según su CCT incluso a grandes distancias. También se observa que los LED blancos filtrados (FLEDww, FLED cw y PCALED) reducen sustancialmente el flujo radiante en la parte azul del

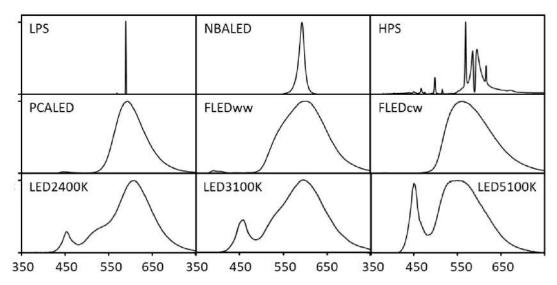


FIGURA 3.8: Nueve emisiones espectrales de distintos tipos de tecnologías de iluminación: sodio de baja presión (LPS); LED ámbar con peak de emisión a 595 nm (NBALED); sodio de alta presión (HPS); LED ámbar convertido con fósforo (PCALED); LED blanco cálido filtrado de 500 nm (FLEDww); LED blanco frío filtrado de 500 nm (FLEDcw); LED blancos con CCT de 2,400 K, 3,100 K y 5,100 K. Fuente: Green et al. 2022.

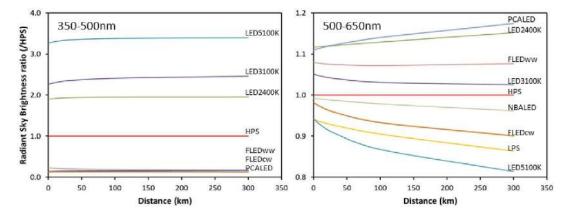


FIGURA 3.9: Relación de la radiancia del cielo en función de la distancia. El panel izquierdo, relativo a HPS, es para $\lambda 350\text{-}500$ nm (LPS y NBALED no tienen emisión); el panel derecho es para $\lambda 500\text{-}650$ nm. Todas las fuentes tienen el mismo flujo luminoso. Fuente: Green et al. 2022.

espectro. En la parte roja del espectro (panel derecho, Figura 3.9), los LED blancos y filtrados de CCT 3,100 K y también tienen un mayor flujo radiante en comparación a lámparas HPS pero mucho menor en comparación a la parte azul del espectro. En este caso el aumento en flujo radiante va de 5 a 12 % en comparación a lámparas HPS para distancias de 10 km o menos.

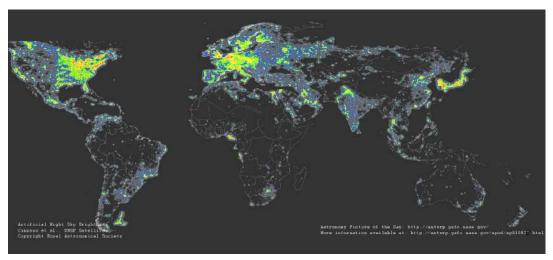
Capítulo 4

Métodos para cuantificar la CL

4.1. Satélites

El monitoreo de la CL por satélites provee una cobertura global a grandes escalas espaciales, permitiendo estudiar este fenómeno en todo el planeta. Las condiciones atmosféricas, y especialmente las nubes son un factor determinante a la hora de adquirir datos desde el espacio. Esto los vuelve un método aplicable solo a condiciones de clima ideales. Además, se debe tener en cuenta que los satélites sólo miden la luz que se emite o se refleja directamente hacia arriba desde la superficie de la Tierra.

4.1.1. DMSP


Las imágenes más antiguas de la Tierra vista de noche (Elvidge et al. 2001) desde el espacio fueron obtenidas a partir de los datos del satélite Defense Meteorological Satellite Program (DMSP) (Figura 4.1a). Este satélite comenzó sus operaciones en la década de 1960 de forma secreta, y en 1972 sus datos fueron liberados y puestos a disposición de la comunidad científica. El sensor del satélite no estaba calibrado, lo que presentó cambios en su ganancia que no fueron registrados. A pesar de este inconveniente, se intentaron idear métodos estadísticos para intercalibrar las series de tiempo. Además de la falta de una calibración de radiancia, el DMSP sufrió de saturación en las ciudades y tenía una resolución radiométrica baja (8 bits) y una resolución espacial de

4.1. Satélites 39

5 km (Miller et al. 2013), junto a un pasabanda en el rango espectral de 500—900 nm.

(A) Impresión artística del satélite DMSP en el espacio. Fuente: Wikipedia.

(B) Atlas del brillo artificial del cielo nocturno de la Tierra. Fuente: Cinzano et al. 2001.

FIGURA 4.1: (A) Instrumento DMSP y (B) Atlas de brillo artificial.

A partir de los datos del DMSP, en Cinzano et al. 2001 se constituye el primer intento de mapear el fenómeno de la CL a escala global, presentando el primer Atlas del brillo artificial del cielo nocturno del mundo (Figura 4.1b), y se encontró que dos tercios de la población mundial vive bajo cielos contaminados lumínicamente, y que una quinta parte de la población mundial ha perdido la visibilidad de la Vía Láctea.

4.1.2. **VIIRS**

En el satélite Suomi National Polar-orbiting Partnership se encuentra a bordo el instrumento llamado Visible Infrared Imaging Radiometer Suite Day-Night Band (VIIRS DNB), que comenzó sus operaciones en el año 2012, cuando se comenzó a masificar el uso de las tecnologías LED (Falchi et al. 2011). El VIIRS DNB captura imágenes de toda la Tierra todas las noches, proporcionando mediciones de radiancia nocturna calibrada con una resolución espacial de 750 metros, contando con un pasabanda en el rango espectral de 500—900 nm (Figura 4.2) y también con sensibilidad radiométrica mayor que el DMSP (Miller et al. 2013). Con las características de este instrumento se puede llegar a estudiar la iluminación artificial a escalas de un vecindario.

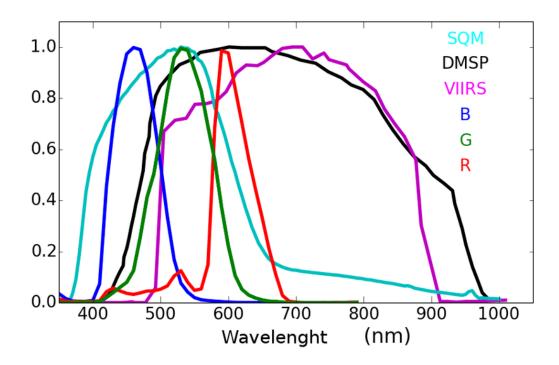
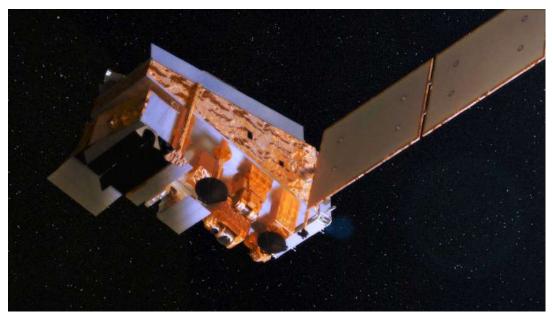
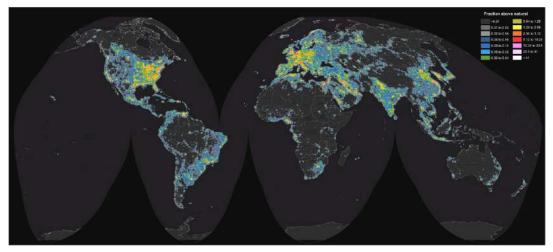



FIGURA 4.2: Respuesta espectral del instrumento VIIRS y los instrumentos DMSP, SQM y los canales RGB de la cámara DSLR Nikon D3S (Sanchez de Miguel, 2015).


Producto del rango espectral en que el instrumento mide la luz, los datos satelitales son menos sensibles a la luz blanca que el ojo humano (cuyo rango espectral es de 400—700 nm) y tienen sensibilidad en longitudes de onda infrarrojas que el ojo humano no puede percibir. Por esta razón, cuando los asentamientos humanos cambian de lámparas naranjas de HPS a LED

4.1. Satélites 41

blancas (Falchi et al. 2011), en los datos satelitales esto se puede ver reflejado como una caída en brillo (Kyba et al. 2017), a pesar de que un ser humano percibe las luces LED blancas como más brillantes.

(A) Impresión artística del satélite Suomi NPP en el espacio Este satélite lleva a bordo el instrumento VIIRS DNB. Fuente: Wikipedia.

(B) Atlas confeccionado a partir de los datos del instrumento VIIRS. Fuente: Falchi et al. 2016.

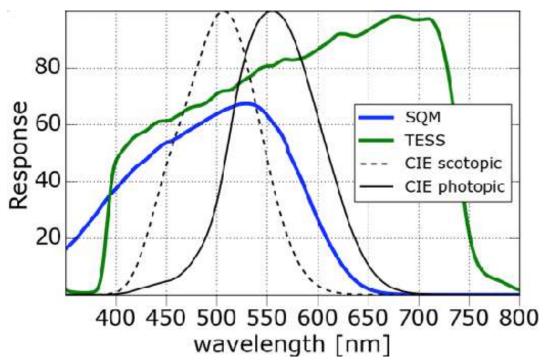
FIGURA 4.3: (A) Satélite Suomi NPP y (B) Atlas de brillo artificial.

En este proyecto de tesis se utilizaron los datos del instrumento VIIRS que están disponibles en la página lightpollutionmap.info de manera interactiva. El sitio lighttrends.lightpollutionmap permite analizar cambios anuales y mensuales en la iluminación nocturna. Cabe destacar que estos datos

no representan directamente el consumo de energía, o la CL; si bien estas magnitudes pueden estar relacionadas a las emisiones de luz artificial, el instrumento no las mide directamente, ya que sólo captura la luz que se refleja hacia arriba de la atmósfera.

4.2. Instrumentos unidimensionales

Los instrumentos unidimensionales o monocanal miden el brillo del cielo utilizando un solo filtro para captar la luz, y por lo general están restringidos a observar en un pequeño cono de luz alrededor del zenit. Si bien los instrumentos de un solo filtro (o canal) son relativamente accesibles en cuanto a costo se refiere (Hänel et al. 2018), están condicionados al hecho de que la distribución espacial, la información espectral y el origen de las fuentes artificiales no se pueden resolver.


4.2.1. SQM

El Sky Quality Meter (SQM, Figura 4.4a) es un instrumento accesible y portátil usado ampliamente en el monitoreo de la CL (Kolláth, 2010; Kyba et al. 2011; Jechow et al. 2019b). El SQM mide la luminancia en una porción de cielo en unidades de ${\rm mag}_{SQM}$ / ${\rm arcsec}^2$ y con una precisión reportada de ${\approx}0.1~{\rm mag}_{SQM}$ / ${\rm arcsec}^2$ (Cinzano, 2005). El sensor del SQM es un fotodiodo de silicio con una respuesta espectral en el rango de 320—1050 nm. Existen varios modelos de este instrumento con diferentes configuraciones de óptica, sensor y filtro, lo que se refleja en distintos campos de visión y respuesta espectral (la cual se hace coincidir con la respuesta de la visión fotópica) del detector (Sánchez de Miguel et al. 2017). Asimismo, la electrónica utilizada determina si el dispositivo es portable o diseñado para una estación de monitoreo fija.

(A) Fotómetro SQM-L. Imagen extraída de (B) Instrumentos TESS-W ubicados en la Unihedron. UCM, Madrid, España. Fuente: stars4all.

(C) Respuesta espectral de los instrumentos SQM y TESS, junto a la respuesta espectral de las visiones escotópica y fotópica. Fuente: Zamorano et al. 2016.

FIGURA 4.4: Instrumentos unidimensionales.

4.2.2. TESS

Los fotómetros TESS-W (Telescope Encoder and Sky Sensor - Wifi) son instrumentos diseñados para realizar mediciones continuas en un sitio fijo para monitorear el NSB (Figura 4.5). Utiliza el mismo sensor del instrumento SQM y de manera adicional cuenta con un sensor infrarrojo para estimar la cobertura de nubes. Este instrumento cuenta con un filtro dicroico en vez de un filtro de color, con lo cual se extiende la respuesta espectral hacia el rojo (Figura 4.4c) haciendo posible visualizar las líneas de lámparas HPS (Zamorano et al. 2016).

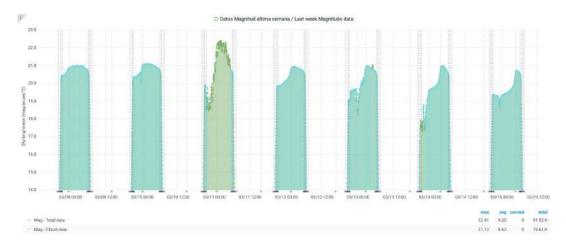


FIGURA 4.5: Tipo de datos que entrega el instrumento TESS. En este caso se muestran los valores de brillo del cielo en un rango temporal de siete días. Los datos están disponibles de manera pública desde la página web tess.dashboards.stars4all.eu.

4.3. Instrumentos bidimensionales

Los instrumentos en dos dimensiones proveen información de la distribución espacial del NSB a través de imágenes del hemisferio superior en el plano horizontal (All-Sky), o bien a través de imágenes verticales capturando la esfera completa (compuesta de dos imágenes verticales) (ver Figura 4.6). Para ello, estos instrumentos están equipados con un lente con un campo de visión de 180° y los sensores del instrumento en general son un CCD, o bien un sensor CMOS para el caso de una cámara DSLR (Digital Single Lens Reflex).

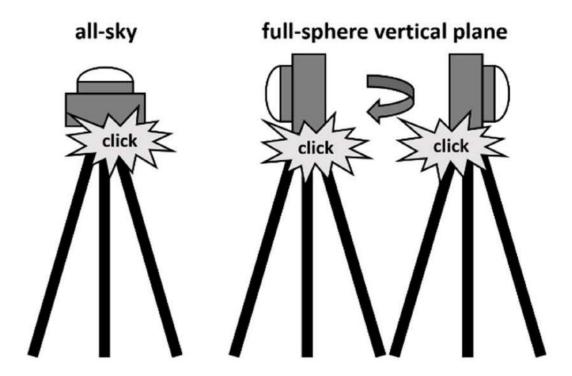


FIGURA 4.6: Concepto de imagen del hemisferio superior (izquierda) e imágen de la esfera completa (derecha). Fuente: Jechow et al. 2019b.

4.3.1. ASTMON

El All-Sky Transmission Monitor (ASTMON) consiste en una lente ojo de pez con una apertura de diagragma de f/4.5 y una cámara CCD astronómica. Este instrumento mide la luminancia del cielo nocturno completo en varias bandas de longitud de onda, y además realiza mediciones de extinción atmosférica y cobertura de nubes (Aceituno et al. 2011). El equipo está completamente protegido para soportar condiciones de clima extremo.

El rango espectral del instrumento está directamente relacionado con la sensibilidad espectral del detector y el uso de la rueda de filtros, que en general está compuesto por filtros Johnson-Cousins B, V, R e I. Las precisiones fotométricas son de alrededor de 0.02 mag/arcsec² para los filtros B, V y R Johnson (Hänel et al. 2018)

4.3.2. Sky Quality Camera

La SQC es un instrumento que consta de una cámara réflex equipada con un lente ojo de pez, calibrada previamente en laboratorio. Luego, llamamos SQC al instrumento calibrado por la empresa Euromix, que también entrega el software "Sky Quality Camera" (disponible en sistemas operativos Windows) que permite al usuario cuantificar la CL. La SQC es capaz de realizar mediciones del NSB y del CCT de sitio en particular, contando con una resolución angular de 1 grado². Una SQC no necesariamente corresponde a un modelo específico de una cámara. En este trabajo se utilizaron dos instrumentos SQC, cuya configuración base consta de una cámara Canon EOS 6D Mark II, que cuenta un sensor CMOS de 26.2 Mpx, también tiene integrado un dispositivo GPS. Sobre los píxeles del sensor (que puede ser un sensor tipo CCD, CMOS, entre otros) se utiliza un mosaico de minúsculos filtros de colores verdes, rojos y azules. En particular se utiliza el mosaico de Bayer sobre el sensor para poder producir una imagen a color (RGB) (Lukac et al. 2005).

Junto a la cámara se utilizó un lente modelo Sigma 8mm f/3.5 EX DG Circular Fisheye con un campo de visión de 186° . En particular, para este trabajo se utilizaron dos SQC con las características mencionadas anteriormente, que de aquí en adelante se denominan "ULS-1" y "ULS-2" .

La SQC provee información cuantitativa sobre el brillo del cielo de todo el hemisferio superior con una sola exposición, o bien, de la esfera completa con dos exposiciones utilizando la cámara verticalmente. Esta cámara DSLR modificada es una herramienta eficaz para caracterizar posibles parques con cielos oscuros (Kolláth, 2010) y también para estudiar la CL (Jechow et al. 2019b).

La precisión de las medidas de este tipo de instrumento depende de la calibración y de las características de la cámara. Las calibraciones más importantes constan de aberraciones asociadas a la óptica como corregir el efecto de viñeteado de los lentes, la distorsión geométrica; y correcciones asociadas al sensor, como por ejemplo la sensibilidad de color de la cámara y su función

FIGURA 4.7: Instrumentos "ULS-1" y "ULS-2" junto a los temporizadores remotos.

sensibilidad (Kocifaj et al. 2015).

Los datos obtenidos por las cámaras se almacenan en formato RAW o bruto (Figura 4.8) para posteriormente ser procesados. No se pueden utilizar formatos comprimidos como jpg, ya que no almacenan los valores originales observados para cada píxel.

Un método para derivar la luminancia es extraer la información sólo de la banda G, ya que éste tiene una buena superposición con la banda V de Johnson-Cousins y también es similar a las curvas de visión fotópica y escotópica. Para obtener valores más precisos se puede hacer una combinación lineal de las tres bandas RGB (Hänel et al. 2018). Posteriormente es posible hacer la transformación entre valores de luminancia y radiancia como se vio en la Sección 2.3.

El CCT se calcula a partir de una matriz de transformación que convierte la información de las tres bandas RGB al espacio de color CIE XYZ (Valencia et al. 2013).

La calibración de las dos SQC fue realizada en laboratorio por el fabricante. Utilizando el software Sky Quality Camera (ver 1.9.5, EUROMIX d.o.o., Ljubljana, Eslovenia) es posible obtener mapas de NSB, luminancia y CCT

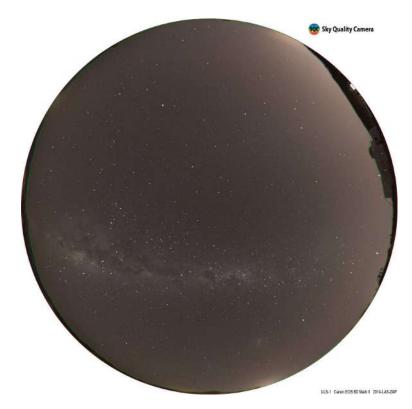
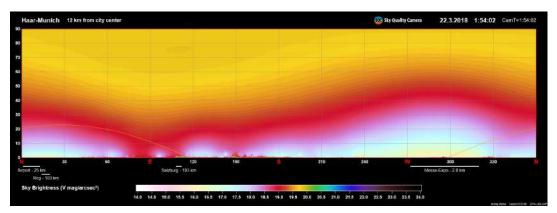
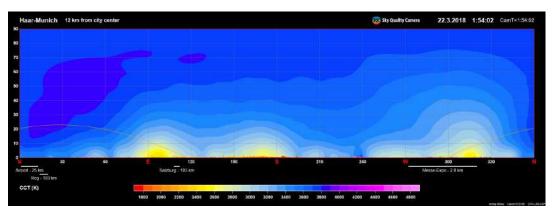



FIGURA 4.8: Imagen RGB bruta tomada por la cámara ULS-1 en el Observatorio Collowara, Andacollo.


en cada píxel de la camara, en proyecciones azimutales, cilíndricas (Figura 4.9) y Hammer-Aitoff. Además, es posible estudiar direcciones o zonas específicas del cielo que sean de interés definiendo áreas. Cuando se tiene un monitoreo continuo a lo largo de toda una noche se puede hacer un análisis temporal a lo largo de toda la noche para estas mismas áreas.

4.4. Espectrógrafo SAND

El Spectrometer for Aerosol Night Detection (SAND) (Martin Aubé, 2007) es un espectrómetro portátil introducido en el año 2005 que tenía como objetivo inicial evaluar los niveles de radiancia del cielo de la reserva internacional de cielos oscuros Mont-Mégantic, Canadá. La configuración del dispositivo es una CCD (Charge-Coupled Device) y un espectrógrafo long slit, cuyo rango espectral va desde 400 a 720 nm. Los espectrómetros son particularmente útiles para estudiar la distribucion de potencia espectral del NSB (Figura

(A) Mapa NSB.

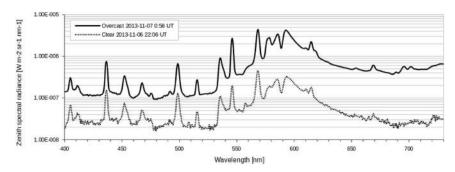

(B) Mapa CCT.

FIGURA 4.9: Imagen en falso color de un cielo contaminado lumínicamente obtenida a partir de un instrumento SQC mostrada en una proyección cilíndrica para (A) NSB y (B) CCT. La imagen fue obtenida por Andrej Mohar en la localidad alemana Haar, ubicada a 12 km de la ciudad de Múnich. Fuente: www.lightpollutionmap.info.

4.10b), pudiendo separar la radiación total del cielo en sus principales contribuciones naturales y/o artificiales.

(A) Fotografía del espectrógrafo SAND en terreno. Fuente: Martin Aubé, 2007.

(B) Espectro del cielo de Madrid, España, obtenido a partir del instrumento SAND-4. Fuente: Aubé et al. 2016.

FIGURA 4.10: Espectrógrafo SAND.

Parte II

Impactos de la Contaminación

Lumínica sobre la calidad de los
cielos nocturnos en sitios de interés
astro-turísticos de la Región de

Coquimbo

Capítulo 5

Campaña de Observación

Con el fin de prevenir la CL y conservar la calidad de los cielos nocturnos, en 1998 se creó la Norma de Emisión para la Regulación de la Contaminación Lumínica¹ (Decreto Supremo N° 686, 1998). En líneas generales, esta primera norma estableció la cantidad máxima de flujo luminoso emitido por lámparas hacia el cielo nocturno. También se determinó que esta norma se aplicaría a las regiones de Antofagasta, Atacama y Coquimbo, además de definir el organismo encargado de la fiscalización del cumplimiento de la norma.

Catorce años más tarde, esta normativa fue actualizada mediante la promulgación del Decreto 43² del año 2012 que regula las nuevas tecnologías de iluminación que no estaban contempladas en la norma anterior, tales como avisos y letreros luminosos, o proyectores de iluminación. Asimismo, la nueva norma entre sus principales novedades instaura nuevas restricciones evitando la emisión de luz hacia el hemisferio superior mediante luminarias apantalladas y sin inclinación; también se restringe la radiancia en la zona azul del espectro, favoreciendo el uso de luz cálida (zona infrarroja del espectro) y finalmente el nuevo ente fiscalizador pasa a ser la Superintendencia del Medio Ambiente³.

En el Capítulo 1 se discutieron los trabajos sobre el estudio del brillo del cielo del norte de Chile. Sin embargo, los estudios mencionados anteriormente están centrados en observatorios profesionales y se ha demostrado que los

¹sinca.mma.gob.cl

²Biblioteca del Congreso Nacional de Chile

³portal.sma.gob.cl

instrumentos monocanal como el SQM no son capaces de cuantificar la emisión de las tecnologías tipo LED en la parte azul del espectro visible (Bertolo et al. 2019).

Un instrumento que cubre estas necesidades es la Sky Quality Camera (ver Sección 4.3.2), la cual además de poder medir la radiancia de las fuentes emisoras tipo LED, es capaz de realizar mediciones de toda la bóveda celeste, incrementando considerablemente la resolución espacial frente a los instrumentos unidimensionales (Sección 4.2). En el reciente trabajo de Uchima-Tamayo, 2021 se utilizó el instrumento SQC para cuantificar las contribuciones artificiales en sitios de interés astronómico, naturalístico y turístico. Siguiendo esta misma línea de investigación, este trabajo apunta a realizar un estudio cuantitativo y sistemático del estado actual de la CL en la Región de Coquimbo aplicando métodos de fotometría All-Sky con el uso de instrumentos SQC.

Para ello se llevó a cabo una campaña de observación durante 8 meses donde se consideraron 9 lugares seleccionados estratégicamente para los cuales documentar por primera vez el estado actual de CL al que cada lugar se ve expuesto. Dichos lugares cuentan con relevancia tanto turística como astronómica. En particular, se realizaron mediciones en el Observatorio El Sauce, en tres observatorios de naturaleza astro-turística administrados por diferentes municipalidades a lo largo de la Región (Collowara, Cruz del Sur y Mamalluca), mientras que también se visitaron cinco observatorios astroturísticos administrados de manera privada (El Sauce, Cancana, Valle del Sol, Del Pangue, Cerro Mayu). De manera adicional se realizaron mediciones a las afueras de una localidad de relevancia turística, Pisco Elqui.

En la Figura 5.1 se muestra la distribución geográfica de los sitios visitados durante la campaña.

FIGURA 5.1: Localizaciones geográficas de los observatorios visitados en la Región de Coquimbo, Chile representados por marcadores azules. Mapa construido a partir de la página web Google Earth.

5.1. Observatorio El Sauce, Río Hurtado

El Observatorio El Sauce es un complejo astronómico privado ubicado en la comuna de Río Hurtado. El Observatorio se encuentra a ~1,550 m de altura sobre el nivel del mar, en las coordenadas (30°28′S, 70°45′0). A 44 km al suroeste está la ciudad de Ovalle, a 126 km al noroeste se encuentra la ciudad de Coquimbo y La Serena, y a 475 al sur kilometros aproximadamente se encuentra la Region Metropolitana. El Sauce es un observatorio completamente robótico destinado para observaciones astronómicas remotas, desde cualquier lugar del mundo, tanto para fines científicos (contando con telescopios reflectores de 1-m⁴), como de astrofotografía. Actualmente este complejo astronómico cuenta con 70 telescopios y más de 300 noches despejadas por año⁵.

Si bien este observatorio no está dedicado al astro turismo, es de particular interés de estudio ya que cuenta con características similares a observatorios profesionales debido a su ubicación remota, lejos de grandes ciudades, así como también gracias a su cantidad de noches despejadas y la calidad de

⁴help.telescope.live

⁵obstech.cl

sus cielos nocturnos. Por lo cual este complejo podría alcanzar una relevancia a nivel de observatorio profesional.

FIGURA 5.2: Observatorio El Sauce, comuna de Río Hurtado, Region de Coquimbo. Fuente: TELESCOPE LIVE.

5.2. Observatorio Collowara, Andacollo

El Observatorio Collowara⁶ es un complejo astro-turístico ubicado en la comuna de Andacollo, y es administrado por la Municipalidad de Andacollo. El Observatorio se encuentra a ~1,300 m de altura sobre el nivel del mar, en las coordenadas (30°15′S, 71°03′O). 2 km al sureste del lugar se encuentra la ciudad de Andacollo, a 59 kilómetros al sureste está la ciudad de Coquimbo y La Serena, y a 529 kilómetros al sur aproximadamente se encuentra la Región Metropolitana. Este complejo astroturístico fue inaugurado el 25 de junio de 2004, y entre sus instrumentos cuenta con telescopios tipo Smith Cassigrain de 14 pulgadas, otros dos telescopios modelo Smith newtoniano

⁶https://astroturismochile.travel/observatorio-collowara/

de 10 pulgadas y un telescopio dobson de 16 pulgadas. Se hace importante estudiar los impactos de la CL en un sitio como el O. Collowara debido a su relevancia a nivel astro-turístico y la cercanía del complejo a la ciudad de Andacollo y faenas mineras.

FIGURA 5.3: Observatorio Collowara, comuna de Andacollo, Región de Coquimbo.

5.3. Observatorio Cruz del Sur, Combarbalá

El Observatorio Cruz del Sur⁷ es el complejo astro-turístico más grande de Sudamérica ubicado en la comuna de Combarbalá, cuya administración está a cargo de la Municipalidad de Combarbalá. El Observatorio se encuentra a ~1,100 metros de altura sobre el nivel del mar, en las coordenadas (31°11′S, 71°00′W). Se ubica a ~2 km de la ciudad de Combarbalá, a 191 km al sureste de Coquimbo y La Serena, y 200 km al sur se encuentra la Región Metropolitana. La arquitectura de este observatorio está compuesta por de cuatro

⁷astroturismochile.travel

FIGURA 5.4: Diego Fernández, quien escribe, posicionando la ULS-1 antes de comenzar el proceso de Adquisición de imágenes.

cúpulas de observación dispuestas de manera que simulan la constelación Cruz del Sur. El Observatorio cuenta con telescopios de 16 y 14 pulgadas y una bóveda semiesférica para conferencias y proyecciones con el fin de acercar la astronomía a la comunidad.

5.4. Observatorio Cancana, Cochiguaz

El Observatorio Cancana se encuentra en la localidad de Cochiguaz, perteneciente a la comuna de Paihuano y es administrado por un privado. El Observatorio se encuentra a ~1,500 m de altura sobre el nivel del mar, en las coordenadas (30°08′S, 70°24′O). A 32 km del lugar se encuentra la ciudad de Vicuña y a 86 km al sureste se encuentra la ciudad de Coquimbo y La Serena. Este sitio está inserto en una localidad libre de alumbado público por lo que ha sido llamado "mirador universal" permitiendo disfrutar de la bóveda celeste a ojo desnudo. Cuenta con una cúpula de observación equipada

⁸turismoregiondecoquimbo.cl

FIGURA 5.5: Observatorio Cruz del Sur, comuna de Combarbalá. Fuente: quehacerenchile.cl.

FIGURA 5.6: Diego Fernández y Juan Pablo Uchima configurando el instrumento SQC antes de comenzar el proceso de Adquisición de imágenes.

con dos telescopios Schmidt-Cassegrain de 14 pulgadas, uno computarizado y otro motorizado.

FIGURA 5.7: Observatorio Cancana, Cochiguaz. Fuente: cancana.cl.

5.5. Observatorio Mamalluca, Vicuña

En las afueras de la ciudad de Vicuña, se encuentra el Observatorio astroturístico Mamalluca⁹, a 1,100 m de altura sobre el nivel del mar, en las coordenadas (30°00′S, 70°41′O). Este Observatorio se encuentra a cargo de la Municipalidad de Vicuña y se ubica a 5 km al noreste de Vicuña y a 71 km al noreste de la ciudad de Coquimbo y La Serena. Este complejo astro-turístico está operativo desde Diciembre de 1998, y cuenta con una cúpula en cuyo interior se encuentra un telescopio Meade LX200-ACF Advanced Coma-Free de 16 pulgadas y otros en sus terrazas, Dobsonianos, de 12, 16 y 17 pulgadas. Siendo el Observatorio Mamalluca el complejo astro-turístico más reconocido en la Región de Coquimbo, se hace necesario estudiar el estado actual de la CL que afecta este observatorio, considerando la cercanía de la ciudad de Vicuña al lugar.

⁹grafelbergnoticias.blogspot.com

FIGURA 5.8: Oservatorio Mamalluca, comuna de Vicuña. Fuente: turismodeestrellas.com.

5.6. Observatorio Valle del Sol, Montepatria

El Observatorio Valle del Sol es un complejo astro-turístico privado ubicado en la localidad de Carén, perteneciente a la comuna de Montepatria. El observatorio se encuentra a 700 m de altura sobre el nivel del mar. Se ubica a 300 m de la localidad de Carén, por lo que es de interés estudiar la calidad de lo cielos nocturnos de este sitio y medir los impactos en CL que genera la localicad de Carén, y ciudades como Ovalle (a 50 km de distancia), y la ciudad de Coquimbo y La Serena a ~110 km de distancia. Además de la observación astronómica, Valle del Sol tiene programas que combinan experiencias culturales y astronómicas en un entorno rural, conociendo Carén y sus alrededores, como la Ruta del Lapislázuli o el pueblo el Maitén 10.

¹⁰turismoregiondecoquimbo.cl

FIGURA 5.9: Observatorio Valle del Sol, Carén. Fuente: turismoregiondecoquimbo.cl.

5.7. Observatorio del Pangue, Valle del Elqui

El Observatorio Del Pangue se encuentra ubicado en la Ruta D-445 que conecta la comuna de Vicuña a la comuna de Río Hurtado en las coordenadas (30°08′S, 70°42′W), a 1,500 m de altura sobre el nivel del mar. Este Observatorio astro-turístico perteneciente a la comuna de Vicuña es administrado de forma privada y se ubica 12 km al sureste de Vicuña y a 60 km de La Serena. Entre sus instrumentos cuenta con un telescopio Schmidt de 16 pulgadas, un telescopio Dobsoniano de 25 pulgadas y otro de 12 pulgadas 11.

¹¹elquiglobal.cl

FIGURA 5.10: Observatorio Del Pangue, Valle del Elqui. Fuente: astroturismochile.travel.

5.8. Pisco Elqui, Paihuano

En la comuna de Paihuano, al interior del Valle del Elqui se encuentra la localidad de Pisco Elqui¹². Es uno de los destinos turísticos del Valle del Elqui cuya historia está vinculada al pisco, un aguardiente de uvas, producido en Chile y Perú. En este lugar se encuentran las más antiguas destilerías chilenas. Asimismo, en la localidad también se encuentra el Observatorio astroturístico Galileo que cuenta con un telescopio de 16 pulgadas. En este sitio no fue posible encontrar una localización segura para realizar mediciones por lo que el set de datos sólo fue de tres imágenes.

¹²piscoelquichile.cl

FIGURA 5.11: Vista de la localidad de Pisco Elqui. Fuente: piscoelqui.com.

5.9. Observatorio Cerro Mayu, Quebrada de Talca

25 km a las afueras de La Serena en la localidad Quebrada de Talca se encuentra el Observatorio Cerro Mayu 13 , administrado por el Colegio Seminario Conciliar - La Serena. El Observatorio Cerro Mayu es un complejo turístico que está a una altitud de ~ 300 m sobre el nivel del mar, en las coordenadas (30°01′S, 71°01′W). Cuenta con un telescopio de 14 pulgadas y dos telescopios solares 14 .

Este es el Observatorio más cercano a la ciudad de La Serena y además en sus alrededores se encuentran varias localidades, entre ellas Quebrada de Talca, Cutún, Alto, El Manzano, Villa El Arrayán, entre otras. En este sitio se observa el uso de tecnologías de iluminación tipo LED (Figura 5.13) por lo que es de particular interés estudiar los impactos que estas tecnologías provocan en el cielo nocturno de un observatorio astro-turístico como Cerro Mayu.

¹³turismoregiondecoquimbo.cl

¹⁴visitalaserena.cl

FIGURA 5.12: Observatorio Cerro Mayu, Quebrada de Talca. Fuente: visitalaserena.cl.

FIGURA 5.13: Alrededores del Observatorio Cerro Mayu, donde se observa la presencia de luces LED de tonos blanquecinos utilizadas en sectores privados.

Capítulo 6

Adquisición, reducción y análisis de imágenes

En este capítulo se explica el procedimiento llevado a cabo para obtener el conjunto de imágenes utilizadas en este estudio. Luego, se presenta la forma en que las imágenes brutas obtenidas con el instrumento SQC fueron reducidos mediante el uso del software Sky Quality Camera y finalmente se explica el análisis de imágenes que se lleva a cabo para la caracterización de CL en los sitios visitados situados en la Cuarta Región.

El equipo base utilizado en este estudio consta de una cámara digital, un lente fish eye con un campo de visión de 186° y un trípode. Adicionalmente se utilizó un temporizador de control remoto. En la Tabla 6.1 se listan todos los materiales utilizados en este trabajo de tesis.

6.1. Obtención de imágenes

Con el objetivo de realizar un monitoreo del estado actual de la CL en distintos lugares del Valle del Elqui, una vez al mes se visitó un sitio de interés astro turístico, alrededor de fechas de luna nueva, considerando el clima para la jornada de observaciones, así como también tomando en cuenta aspectos logísticos en las visitas a los observatorios, como por ejemplo la facilidad para el acceso al sitio, seguridad de los equipos y las personas encargadas de tomar imágenes, disposición de las personas a cargo de los observatorios, entre otros.

TABLA 6.1: Lista del equipamiento utilizado para mediciones de CL en terreno.

Ítem	Marca y modelo
Cámara digital	Canon EOS 6D Mark II
Lente	Sigma's 8mm F3.5 EX DG Circular Fisheye
Trípode	Manfrotto MK055XPRO3-3W
Notebook	HP / Windows 10
Tarjeta de memoria	SanDisk MicroSD HC 32 GB
Linterna	Linterna estándar
Nivel de burbuja	Nivel Torpedo Stanley 43-511s
Temporizador	Canon TC-80N3

Debido al contexto de pandemia que se vive actualmente, en algunos meses no fue posible realizar mediciones en el Valle del Elqui, por lo que se decidió utilizar esas salidas a terreno para expandir la investigación a otras zonas dentro de la Cuarta Región.

Además, a lo largo del desarrollo de este proyecto de tesis se experimentó y asimiló el uso de la SQC, intentando optimizar de la mejor manera posible la adquisión de imágenes a medida que se visitaban los distintos sitios de estudio, llegando a desarrollar un procedimiento estable para la recolección de información. Las imágenes utilizadas en esta tesis fueron obtenidas por quien escribe este trabajo, con la asistencia del Ingeniero Magíster Juan Pablo Uchima (quien cursa actualmente el Doctorado en Astronomía en la Universidad de La Serena).

De manera complementaria a las imágenes que se obtuvieron con las cámaras SQC, se utilizaron datos meteorológicos de nubes obtenidos a partir de Zoom Earth (más detalles en la Sección 6.1.2), y también se utilizaron simulaciones de un cielo natural a partir del modelo GAMBONS (Masana et


al. 2020) que permite comparar un cielo virtuarmente libre de CL, con un cielo contaminado lumínicamente. A continuación se explica el procedimiento para obtener los distintos tipos de datos.

6.1.1. SQC

6.1.1.1. Configuración inicial

Para el correcto funcionamiento del instrumento hay una serie de parámetros iniciales que deben ser ajustados. El uso y descripción de los botones físicos de la cámara está descrito en su manual oficial. Asimismo, las figuras mostradas en esta sección fueron extraídas del manual oficial de la cámara.

Una vez colocada la batería (previamente cargada al 100 %) y la tarjeta de memoria, en el menú de configuraciones SET UP2 de la cámara se debe fijar la zona horaria correspondiente al lugar en que se van a realizar mediciones (Figura 6.1a). En este caso, la zona horaria correspondiente es la Chile continental, UTC -04:00. Adicionalmente, de estar activo el horario de verano en la zona en cuestión, se debe activar la casilla correspondiente (Figura 6.1b). De igual manera, se debe comprobar la hora de la cámara ya que al quitar la batería ésta se puede desconfigurar.

(A) Elección de la zona horaria.

(B) Horario de Verano.

FIGURA 6.1: Configuraciones de Fecha/Hora/Zona en el menú de ajustes SET UP2.

En el menú de configuraciones "SHOOT1", la calidad de la imagen debe ser fijada en RAW (Figura 6.2), ya que este es el formato con el que se procesan las

imágenes. En este caso, el formato JPEG no es utilizado.

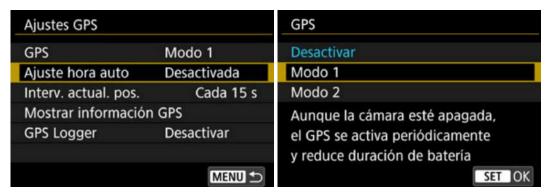


FIGURA 6.2: Menú de ajustes SH00T1.

Luego, se debe activar el GPS de la cámara, para ello se selecciona la opción "Ajustes GPS" (Figura 6.3a) en el menú SET UP3 y luego se activa el GPS en Modo 2 (Figura 6.3b), para solo tener activo el GPS mientras la cámara está encendida y así extender la duración de la batería. En Modo 1 la cámara continúa recibiendo señales de GPS aunque esté apagada, lo cual implica un mayor gasto de batería. También se ajusta el intervalo de actualización de la información de GPS en la casilla "Interv. actual. pos."; este parámetro se fija en 5 min con el fin de maximizar la duración de batería, lo cual se traduce en una mayor cantidad de imágenes.

Por último se deben configurar dos parámetros del lente de la cámara. En primer lugar el tipo de enfoque del lente debe ser "M" (o MF, ver Figura 6.4a). En este caso, la cámara ya viene previamente enfocada al infinito correctamente por el fabricante, y el foco está fijado con cinta adhesiva. Además, la apertura del lente debe estar completamente abierta (f/3.5) como se indica en la Figura 6.4b.

La configuración del resto de los parámetros de la cámara son los que vienen por defecto.

(A) Visualización de las opciones "GPS", (B) Selección del modo de funcionamiento "Ajuste hora auto", "Interv. actual. pos.". del GPS.

FIGURA 6.3: Configuraciones de GPS en el menú de ajustes SET UP3.

(A) Selección del tipo del enfoque del lente.

(B) Ajuste de la apertura del lente.

FIGURA 6.4: Ajustes del lente Sigma 8mm fisheye.

6.1.1.2. Procedimiento en terreno

Posteriormente a la configuración inicial de la SQC, se realiza una inspección visual del terreno durante el día con el fin de buscar un lugar óptimo para posicionar la cámara, de tal forma que se obtenga la mayor cantidad de información del cielo nocturno, teniendo precaución de no tener obstáculos cercanos que cubran una gran parte del cielo (edificios, árboles, arbustos, etc).

FIGURA 6.5: Vista satelital del Observatorio Cerro Mayu por Google Earth. La ubicación de la SQC "ULS-1" está indicada con un marcador azul. Las coordenadas del instrumento ULS-1 corresponden a (-30.013230°, -71.025018°), a una altitud de 350 m.

En la Figura 6.5 se muestra como ejemplo la posición elegida para la cámara, durante las mediciones realizadas desde el Observatorio Cerro Mayu.

El procedimiento estándar para medir la CL es obtener imágenes de todo el cielo (*All-Sky*). Para ello, se orienta la cámara apuntando hacia el Norte geográfico (Figura 6.6a), utilizando una brújula (en este caso, la brújula de un smartphone). Luego, se utiliza un nivel de burbuja, y posicionándolo sobre la tapa del lente, se alinea la parte trasera de la cámara con el plano horizontal del lugar en los ejes Norte-Sur y Este-Oeste (Figura 6.6b).

(A) Alineación del Norte.

(B) Alineación horizontal en el eje Norte-Sur.

FIGURA 6.6: Alineaciones de la cámara.

Para facilitar la alineación del equipo, este procedimiento se realiza durante el crepúsculo vespertino; y una vez terminada la alineación de la cámara, ésta no se debe mover y debe permanecer en la misma posición durante toda la jornada de observación.

En la Figura 6.7 se muestra la presición en grados con que fue alineado el instrumento en todos los sitios de estudio. Se puede ver que a lo largo de las visitas a los observatorios se redujo el error en la alineación de los ejes Este-Oeste y Norte-Sur, con lo cual se mejoró el manejo de la cámara. A partir de la visita al O. Cancana, la precisión de la alineación en los dos ejes antes mencionados fue menor al medio grado, considerando que el error máximo que tolera la cámara para la alineación es de tres grados en los ejes Este-Oeste y Norte-Sur. Se observa una mayor discrepancia en eje Zenital con respecto a los otros dos ejes, ya que el eje Zenital representa la precisión con la que se apunta la cámara al norte, con lo cual el error está condicionado a la presición de la brújula utilizada, que en este trabajo fue la brújula del celular. Los celulares android (o iOS) utilizan sensores magnéticos para encontrar la dirección al norte, aunque su precisión puede tener discrepancias que van desde 20° a 80° con respecto a brújulas analógicas (Blum et al. 2012; Novakova et al. 2017). Sin embargo, la correcta alineación de los ejes Este-Oeste y Norte-Sur es más importante que el eje Zenital, ya que en el proceso de Reducción de imágenes se corrige fácilmente la alineación en el eje Zenital a

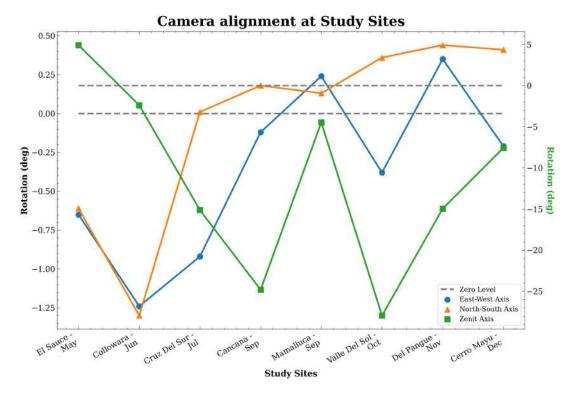


FIGURA 6.7: Alineación de la SQC en los sitios para los ejes Este-Oeste (círculos de color azul), Norte-Sur (triángulos de colornaranja) y Zenital (cuadrados de color verde). El nivel cero para los ejes Este-Oeste, Norte-Sur y Zenital se indica con las líneas horizontales discontinuas de color gris. El eje y izquierdo representa la presición de la alineación en grados para los ejes Este-Oeste y Norte-Sur, mientras que en el eje y de la derecha los valores corresponden al eje Zenital. Los Observatorios están ordenados cronológicamente según la fecha en que fueron visitados.

través de la posición de las estrellas en el cielo.

A continuación, se obtienen imágenes antes del comienzo del twilight (crepúsculo) astronómico, utilizando el modo de disparo "Manual" de la cámara. El objetivo de tomar imágenes durante el día, es para poder diferenciar fácilmente entre el cielo y los obstáculos del horizonte local (montañas, edificios, árboles, etc), y así definir correctamente el "Sky Border" (ver Sección 6.2.4) de las imágenes durante la etapa de Reducción de los imágenes.

6.1.1.3. ISO y tiempos de exposición

Una vez termina el twilight atronómico, se debe cambiar la cámara a modo de disparo "Bulb", y se deben considerar dos parámetros importantes: el tiempo de exposición de cada imagen y la configuración de ISO, para minimizar el ruido y evitar la saturación. En general, valores de ISO bajos generan menos ruido en la imagen, pero requieren tiempos de exposición más largos. Por otra parte, tiempos de exposición largos no son prácticos para las series temporales y los objetos en movimiento, como las nubes, y provocan manchas en los objetos celestes debido a la rotación de la Tierra.

El valor de ISO utilizado siempre fue de 3200 o 1600, ya que el instrumento fue calibrado utilizando estos valores.

Luego, se toman imágenes de prueba utilizando distintos valores de tiempo de exposición, ya sea 30, 60, 90 o 120 s, dependiendo del grado de CL que sufra el sitio en cuestión, para luego inspeccionarlas en el software SQC, donde se debe revisar el histograma de la imagen para no tener zonas de la imagen saturadas, y también se debe inspeccionar la señal a ruido (S/N) para evitar la subexposición. Idealmente se debe tener una S/N mayor a 20.

Cuando se fija el mejor tiempo de exposición, se procede a realizar un monitoreo constante a lo largo de toda la noche, dejando un intervalo de 3 min entre cada exposición, con el fin de que la batería de la cámara no se descargue antes de que termine la jornada de observación.

En la Tabla 6.2 se muestra un resumen de la cantidad de imágenes obtenidos por la SQC en la campaña de mediciones realizada en el año 2021. Cabe mencionar que en la jornada de observación del Observatorio Cerro Mayu se obtuvieron sólo 5 imágenes utilizables debido a la alta humedad que hubo esa noche, factor por el cual la integridad del instrumento se puede ver comprometida, por lo que se decidió dar por terminada la sesión de observación en la primera parte de la noche.

TABLA 6.2: Lista de los sitios de estudio (observatorios) visitados durante la campaña de observación.

Sitio de estudio	Latitud (°)	Longitud (°)	Altitud (m)	Fecha	Hora local	N° frames	Tiempo de exp. (s)	ISO
El Sauce, Río	-30.471212	-70.764848	1570	2021/05/10-11	20:54-05:59	211	120	3200
Hurtado								
Collowara, An-	-30.249003	-71.065107	1300	2021/06/10	22:42-05:48	180	90	1600
dacollo								
Cruz del Sur,	-31.203595	-71.000195	1130	2021/07/09	20:40-06:15	206	120	1600
Combarbalá								
Cancana, Co-	-30.142085	-70.407430	1560	2021/08/05	21:21-06:32	186	120	3200
chiguaz								
Mamalluca, Vi-	-29.990005	-70.685428	1070	2021/09/08	22:55-06:25	90	120	1600
cuña								
Valle del Sol,	-30.851082	-70.773080	700	2021/10/05	21:30-05:50	101	120	1600
Monte Patria								

continúa en la siguiente página

continuación de la Tabla 6.2

Sitio de estudio	Latitud (°)	Longitud (°)	Altitud (m)	Fecha	Hora local	N° frames	Tiempo de exp. (s)	ISO
Del Pangue, Ru-	-30.144533	-70.691923	1520	2021/11/05	23:13-05:13	71	120	1600
ta D-445								
Pisco Elqui,	-30.126662	-70.499125	1400	2021/11/06	21:41–21:49	3	120; 90	1600
Paihuano								
Cerro Mayu,	-30.013192	-71.024952	330	2021/12/03	22:11–22:31	5	90	1600
Quebrada de								
Talca								

6.1.2. Meteorología de Zoom Earth

La página web Zoom Earth provee información satelital sobre el estado de las nubes en tiempo real. A modo de ejemplo, para la visita al Observatorio Collowara se obtuvieron los datos de la noche del 10~11 de junio del 2021, a partir de las 18:00¹ del día 10 hasta las 06:00 del día 11. En la Figura 6.8 se presenta una imagen del estado de las nubes a las 02:00 de esa noche. Conocer el estado meteorológico durante la jornada de mediciones es esencial a la hora de estudiar las variaciones temporales de las imágenes, que pueden estar presentes tanto en NSB como en la contraparte CCT de las imágenes a lo largo de toda la noche.

En la Tabla 6.3 se presentan los datos meteorológicos para los sitios de estudio visitados en la Campaña de Observación.

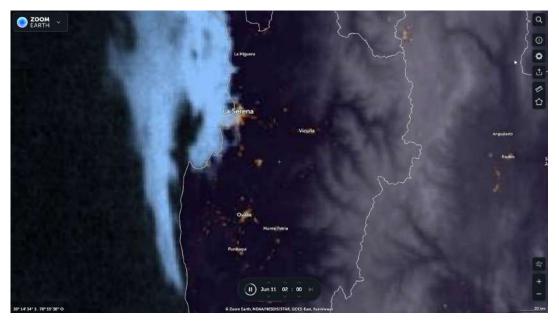


FIGURA 6.8: Vista satelital del estado de las nubes mediante Zoom Earth para la noche del 10~11 de Junio del 2021. La cruz en la parte central de la imagen representa la posición de la cámara. La fecha de la imagen es el 11 de Junio del 2021 a las 02:00. Por el noroeste se observa un frente de nubes que cubre gran parte de la ciudad de La Serena y Coquimbo.

¹De aquí en adelante se utiliza un sistema horario de 24 horas.

TABLA 6.3: Información meteorológica de Zoom Earth para la campaña de mediciones con la SQC.

Sitio de estudio (Observatorio)	Medición de Nubes
El Sauce, Río Hurtado	No medido
Collowara, Andacollo	link
Cruz del Sur, Combarbalá	link
Cancana, Cochiguaz	link
Mamalluca, Vicuña	link
Valle del Sol, Monte Patria	link
Del Pangue, Ruta D-445	link
Pisco Elqui, Paihuano	link
Cerro Mayu, Quebrada de Talca	No medido

6.2. Reducción de imágenes

Las imágenes obtenidas en las jornadas de observación se procesan utilizando la herramienta "Sky Quality Camera" en su versión 1.9.5. A continuación se explica el proceso llevado a cabo para procesar las imágenes obtenidas en la visita a un sitio en particular. En todos los sitios de estudio las imágenes fueron procesadas de la misma forma.

6.2.1. Archivos de calibración

Ámbas cámaras fueron compradas directamente al desarrollador del sotfware Sky Quality Camera, y las mismas fueron previamente calibradas en laboratorio por EUROMIX d.o.o. (Ljubljana, Eslovenia). Así, se tiene un archivo de calibración para cada cámara que se debe cargar en la pestaña indicada en la Figura 6.9.

FIGURA 6.9: Pestaña en el software Sky Quality Camera donde se carga el archivo de calibración.

6.2.2. Información espacio-temporal

Ya que la cámara cuenta con GPS, se tiene acceso a la información espaciotemporal, i.e., coordenadas geográficas, elevación y zona horaria; los cuales son los parámetros iniciales de entradas para procesar una imagen. Con esta información se crea una ubicación asociada al sitio de estudio, en el apartado "Location" (Figura 6.10).

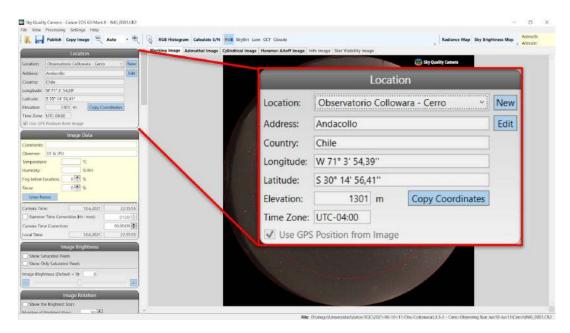


FIGURA 6.10: Interfaz del software SQC donde se indica en el cuadro rojo la pestaña "Location" donde se ingresa la información espacio-temporal, en este caso la información relativa al Observatorio Collowara.

6.2.3. Rotación de la imagen

Una vez ingresados los parámetros iniciales, se debe corregir la alineación de la imagen que se explica en la Sección 6.1.1.2. Esta corrección se realiza haciendo uso de la posición de las estrellas en la bóveda celeste según la localización geográfica, la fecha y hora de la imagen que esté siendo procesanda. Como se observa en la Figura 6.11, en el apartado "Image Rotation", se realiza la rotación en los ejes Norte-Sur y Este-Oeste, y del mismo modo se corrije el eje del Zenit para hacer coincidir el norte de la imagen.

FIGURA 6.11: Izquierda: Rotación de la imagen en los distintos ejes. Derecha: Definición del horizonte

6.2.4. Determinación del horizonte local

Luego de rotar la imagen se define el borde de cielo de la imagen o "Sky Border", a través del cual se separa lo que es el cielo de lo que son montañas u estructuras lejanas ya que solo es de interés la información proveniente de la bóveda celeste. Para ello, primero se selecciona la opción "Dark & Bright Horizon" en el apartado "Sky Border" (ver Figura 6.11), y luego se encuentra el borde del cielo usando la opción "Find Sky Border". Al realizar esta serie de pasos se tiene una aproximación del horizonte local, sin embargo, este proceso se mejora eligiendo el borde del cielo manualmente a través de los cuadros amarillos en la Figura 6.12.

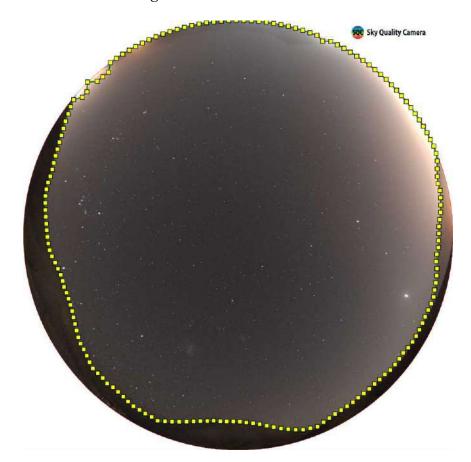
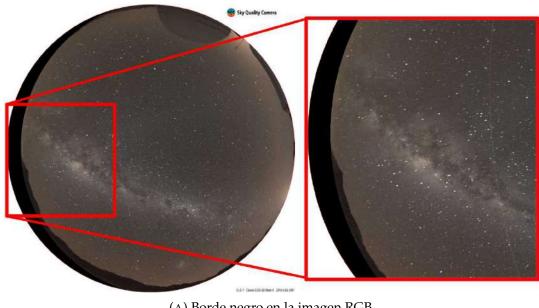


FIGURA 6.12: Elección manual del borde del cielo en una imagen obtenida a las 22:11 en el Observatorio Cerro Mayu.

Es importante poder tomar imágenes durante el día, ya que en ocasiones puede ser difícil poder darse cuenta de la presencia de montañas al horizonte debido a la CL. Esta situación se pudo observar en las datos obtenidas en el

Observatorio Cerro Mayu, como se ve en la Figura 6.13b, donde se indica con una flecha roja una zona de la imagen donde es muy difícil identificar las montañas lejanas, por lo que necesariamente se necesitan imágenes claras del cielo, como la que se muestra en la Figura 6.13a.

(A) Imagen tomada a las 20:20, cuando aún (B) Imagen tomada a las 22:11. Se indica con son distingibles montañas lejanas debido a una flecha roja la zona donde no es posible que aún hay suficiente luz natural. identificar montañas lejanas.


FIGURA 6.13: Comparación de imágenes obtenidas en el Observatorio Cerro Mayu.

6.2.5. Comprobación de la alineación de la imagen

Puede ocurrir que en la imagen se tenga un borde negro donde no hay información del cielo (Figura 6.14a). Esto puede ocurrir cuando la alineación de la cámara no se realizó de manera correcta, o porque la hora de la cámara no coincidía con la hora local. En el último caso, el problema se puede corregir haciendo correcciones a la hora de la cámara (Figura 6.14b), y luego volviendo a rotar la imagen (Sección 6.2.3) hasta que el borde negro desaparezca. Este proceso simplemente requiere de prueba y error hasta encontrar la mejor corrección de hora.

Para asegurarse de que la corrección se hizo correctamente, se seleccionan las coordenadas de azimut y altitud de varias estrellas distribuidas homegenamente en la imagen RGB (Figura 6.15a), y luego se comparan con sus coordenadas obtenidas a partir del software "Stellarium" (Figura 6.15b), que es un planetario virtual de código abierto².

²stellarium.org.

(A) Borde negro en la imagen RGB.

Camera Time:	10.5.2021	23:50:56
Summer Time Corre	01:00	
Camera Time Correction	-01:00:00	
Local Time:	10.5.2021	22:50:56

(B) Corrección a la hora de la cámara en la pestaña "Image Data" (Figura 6.10).

FIGURA 6.14: Corrección del borde negro en una imagen.

Para obtener las coordenadas de la estrella en la imagen RGB, se sitúa el cursor del mouse sobre la estrella a comparar, y luego se visualizan las coordenadas de azimut y altitud (parte izquierda en la Figura 6.16). Para obtener las coordenadas de la estrella en Stellarium, previamente se debe ingresar la información espacio-temporal del lugar en Stellarium, así como también la hora de la imagen a comparar; luego se debe buscar la estrella en el planetario virtual y se desplegará toda la información disponible de dicha estrella (parte derecha en la Figura 6.16). La precisión instrumental de la cámara es de 1°, por lo que la alineación de la imagen se puede considerar correcta si las coordenadas de las estrellas elegidas no difieren en más del valor del error instrumental.

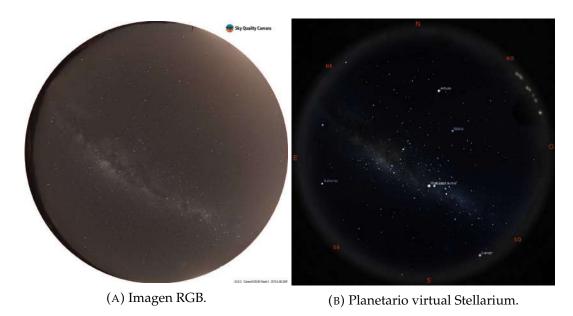


FIGURA 6.15: Comparación entre la imagen RGB tomada a las 22:35 y el planetario virtual Stellarium.

6.2.6. NSB y CCT

A continuación se procede a obtener los valores de Sky Brightness y Luminancia para la imagen, calculado para cada píxel de la cámara. Para ello se adopta un coeficiente de extinción para la banda visual V de 0.15 mag/airmass, medido en el telescopio Swope, del Observatorio Las Campanas (Krisciunas et al. 2017). Incluso al variar este parámetro entre 0.1 y 0.3 mag/airmass no hay variaciones significativas en NSB, como se comprobó en Uchima-Tamayo, 2021. Además se removieron las estrellas más brillantes y se aplicó un suavizado a la imagen para reducir el ruido. Para NSB el parámetro de suavizado o "Smoothing" es 10 y para CCT se usa un valor de 20.

Por otra parte, para el cálculo de los valores de CCT también se removieron las estrellas más brillantes y se aplicó un suavizado con el fin de reducir el ruido.

En este punto la imagen está completamente reducida y es posible automatizar este proceso para todo el set de imágenes de un cierto lugar de estudio. La salida del procesamiento de las imágenes brutas . CR2 son archivos con extensión . SQC, compuestas de la imagen RGB procesada, una imagen en falso color de NSB y una imagen en falso color de CCT.

FIGURA 6.16: Comparación de las coordenadas azimut y altitud para la estrella que se indica en la interfaz de Stellarium.

En la Figura 6.17 se muestra una imagen procesada, en este caso se visualiza tanto el mapa NSB como de CCT del archivo . SQC, sin incluir la imagen RGB. En la parte superior de la Figura se tiene toda la información referente al lugar (información espacio temporal) y a la imagen procesada (fecha, hora, ISO, apertura y tiempo de exposición). El NSB de la imagen se representa en un mapa falso color en unidades de radiancia del cielo mag/arcsec² o de manera equivalente, en unidades de luminancia μ cd/m². El CCT de la imagen también se presenta en un mapa de falso color en unidades Kelvin (K). En la parte inferior izquierda de la imagen, se muestra una tabla con los valores de NSB y CCT para distintos rango en ángulo zenital, además se indica el punto más oscuro del cielo por una cruz dentro de un círculo rojo en la imagen NSB, junto a su valor y coordenadas en azimut y ángulo cenital en la parte inferior derecha del mapa NSB. En la parte inferior central se muestran los valores de iluminancia y CCT escalar, y también los valores de iluminancia y CCT con la corrección por coseno. Finalmente, en la parte inferior derecha se muestran parámetros referentes a la forma en que fue procesada la imagen.

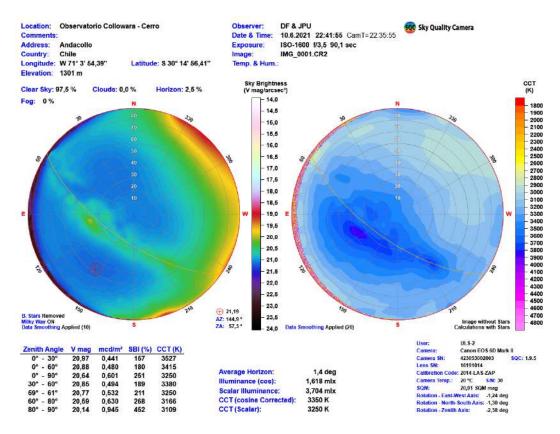


FIGURA 6.17: Resultado del procesamiento de una imagen tomada por la cámara ULS-2 con el software SQC. **Panel izquierdo**: NSB en el filtro V en *mag/arcsec*². **Panel derecho**: CCT en unidades Kelvin. También se muestra más información de la imagen como la ubicación, elevación, fecha, hora, parámetros de exposición (ISO y tiempo de exposición), entre otros. Por el contorno de ambas imágenes se indican los 4 puntos cardinales junto al azimut en grados. Este tipo de imagen se denomina Info Image.

6.3. Análisis de imágenes

Las imágenes procesadas . SQC entregan mucha información sobre la CL de un lugar de estudio. En este capítulo se explica el proceso que se lleva a cabo para analizar las imágenes procesadas del set completo de un sitio de estudio dado. Este procedimiento se replicó para cada uno de los sitios visitados y se divide en dos partes, la primera es la identificación de las fuentes artificiales que afectan al sitio de estudio, y la segunda parte corresponde a la elección de áreas de interés a estudiar.

6.3.1. Identificación de las fuentes de CL

Con el fin de estudiar la CL que afecta en el horizonte desde el lugar de estudio, se realiza una inspección visual tanto de las imágenes RGB, NSB y CCT, tomando al menos dos imágenes representativas a lo largo de la jornada. De manera estándar se utiliza la imagen tomada al inicio de la noche, y otra imagen tomada al final de la noche. En la Tabla 6.4 se indica el nombre y hora de las dos imágenes utilizadas según cada sitio de estudio.

Para identificar las fuentes de CL en primer lugar se inspeccionan las imágenes RGB (Figura 6.18), con el objetivo de tener una primera aproximación sobre las fuentes artificiales que más destaquen en la imagen. Como ejemplo, en las dos imágenes de la Figura 6.18 se observan varios halos de luz que provienen del horizonte por la parte derecha de cada cada imagen.

Luego, se consideran los mapas de NSB y CCT de manera paralela. Para ejemplificar, en los mapas NSB del panel superior de la Figura 6.19 se observaran tres "burbujas" en todo el hemisferio oeste de la imagen, donde el valor del NSB para dichas "burbujas" es mayor al horizonte, lo que se refleja en colores más cálidos (rojos). Por otra parte, en los mapas CCT (panel inferior de la Figura 6.19) se observan valores más bajos (~3,000 K) en todo el horizonte con respecto a los valores que se tienen en el plano de la Vía Láctea (~3,700 K).

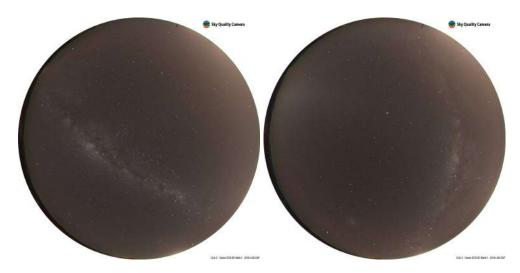


FIGURA 6.18: Imágenes RGB en proyección azimutal desde el Observatorio Collowara. **Panel izquierdo**: imagen tomada con la cámara "ULS-2", el día 10.06.2021 a las 22:35:55. **Panel derecho**: imagen tomada por la misma cámara el día 11.06.2021 a las 05:42:25.

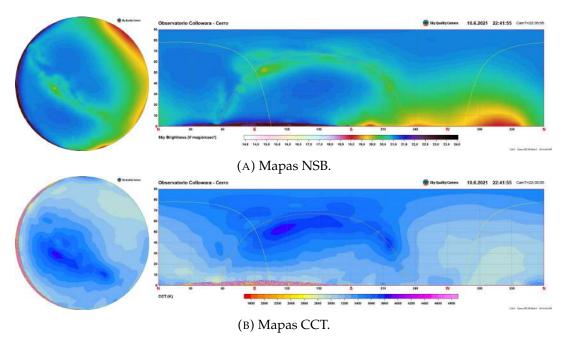


FIGURA 6.19: Distintas proyecciones para la imagen IMG001. **Figura 6.19a**: Izquierda: Proyección azimutal en mapa NSB. Derecha: Proyección cilíndrida, con los ejes en coordenadas horizontales: **Azimut** en el **eje x y Altura** sobre el horizonte en el **eje y**, ambos ejes en unidades de grados. La barra de color indica la escala del NSB en mag/arcsec². **Figura 6.19b**: Izquierda: Proyección azimutal en mapa CCT. Derecha: Proyección cilíndrida. La barra de color indica la escala del CCT en Kelvin. En ambas proyecciones cilíndricas, la línea amarilla representa la eclíptica, mientras que la línea naranja representa el plano de la Vía Láctea.

Para saber si estas "burbujas" efectivamente se corresponden con zonas contaminadas lumínicamente, se utilizan los mapas de radiancia construidos

a partir de los datos del instrumento VIIRS 2021. A partir de este mapa de radiancia es posible estimar de dónde proviene la CL, que en este caso, su origen pueden ser ciudades, pueblos, faenas mineras, entre otros.

En la Figura 6.20 se muestra la página web Light Pollution Map, que permite estimar la localización de las fuentes artificiales en función del lugar en que se encuentre la cámara y la radiancia que emiten las mismas fuentes. Con esta herramienta es posible delimitar el rango en azimut que abarca cierta fuente artificial. En la Figura 6.20, se muestran los rangos en azimut para la ciudad de Coquimbo junto a la ciudad de La Serena vista desde el O. Collowara.

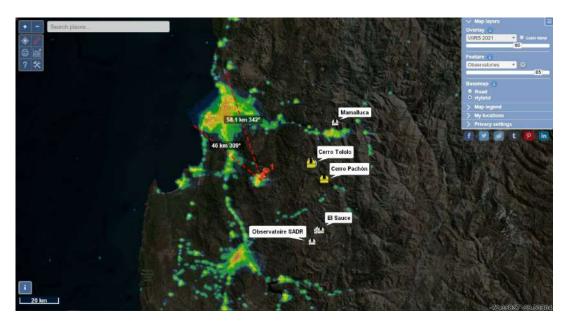


FIGURA 6.20: Interfaz interactiva de la página Light Pollution Map. Las líneas rojas discontinuas representan el área designada en azimut para Coquimbo - La Serena. El push pin rojo representa la ubicación de la cámara. En la imagen también se indican otros observatorios de relevancia científica y astro-turística. Se indica también la ubicación de los observatorios cercanos.

Luego de examinar los mapas NSB y CCT como los que se muestran en la Figura 6.19, se delimitan los rangos de azimut para todas las fuentes de CL que afectan al sitio en cuestión utilizando el mapa de radiancia Light Pollution Map.

Posteriormente, se añaden las fuentes artificiales a la imagen, como la que se muestra en la Figura 6.21 donde la imagen es vista una proyección cilíndrica. Se destaca que la región delimitada para la ciudad de Coquimbo - La

89

Serena está contenida en la misma región delimitada para la ciudad de Andacollo.

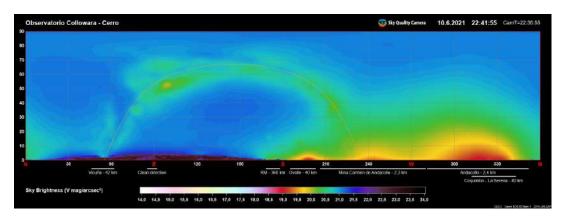


FIGURA 6.21: Misma proyección cilíndrica de la Figura 6.19a, donde ahora se incluyen las fuentes artificiales encontradas a partir de los datos del mapa de radiancia del intrumento VIIRS. La extensión de la línea blanca representa el rango de azimut de la fuente identificada.

TABLA 6.4: Lista de las imágenes utilizadas para el análisis de cada sitio de estudio.

El Sauce IMG005 20:54:03 IMG131 05:55:45 Collowara IMG001 22:35:55 IMG239 05:42:25 Cruz del Sur IMG003 20:40:16 IMG280 06:15:18 Cancana IMG001 21:21:33 IMG260 06:29:57 Mamalluca IMG005 22:55:10 Valle del Sol IMG008 21:30:47 IMG108 05:50:44 Del Pangue IMG019 23:13:45 IMG041 01:03:46 Pisco Elqui IMG006 21:41:21 IMG008 21:49:34 Cerro Mayu IMG016 22:11:51 IMG021 22:31:52	Sitio de estudio	Nombre imagen	Hora local
Collowara IMG001 22:35:55 IMG239 05:42:25 Cruz del Sur IMG003 20:40:16 IMG280 06:15:18 Cancana IMG001 21:21:33 IMG260 06:29:57 Mamalluca IMG005 22:55:10 Valle del Sol IMG008 21:30:47 IMG108 05:50:44 Del Pangue IMG019 23:13:45 IMG041 01:03:46 Pisco Elqui IMG006 21:41:21 IMG008 21:49:34 Cerro Mayu IMG016 22:11:51	El Sauce	IMG005	20:54:03
IMG239 05:42:25		IMG131	05:55:45
Cruz del Sur IMG003 20:40:16 IMG280 06:15:18 Cancana IMG001 21:21:33 IMG260 06:29:57 Mamalluca IMG005 22:55:10 IMG055 03:05:10 Valle del Sol IMG008 21:30:47 IMG108 05:50:44 Del Pangue IMG019 23:13:45 IMG041 01:03:46 Pisco Elqui IMG006 21:41:21 IMG008 21:49:34 Cerro Mayu IMG016 22:11:51	Collowara	IMG001	22:35:55
Cruz del Sur IMG280 06:15:18 Cancana IMG001 21:21:33 IMG260 06:29:57 Mamalluca IMG005 22:55:10 IMG055 03:05:10 Valle del Sol IMG008 21:30:47 IMG108 05:50:44 Del Pangue IMG019 23:13:45 IMG041 01:03:46 Pisco Elqui IMG006 21:41:21 IMG008 21:49:34 Cerro Mayu IMG016 22:11:51		IMG239	05:42:25
CancanaIMG00121:21:33IMG26006:29:57MamallucaIMG00522:55:10IMG05503:05:10Valle del SolIMG00821:30:47IMG10805:50:44Del PangueIMG01923:13:45IMG04101:03:46Pisco ElquiIMG00621:41:21IMG00821:49:34Cerro MayuIMG01622:11:51	Cruz del Sur	IMG003	20:40:16
Cancana IMG260 06:29:57 Mamalluca IMG005 22:55:10 IMG055 03:05:10 Valle del Sol IMG008 21:30:47 IMG108 05:50:44 Del Pangue IMG019 23:13:45 IMG041 01:03:46 Pisco Elqui IMG006 21:41:21 IMG008 21:49:34 Cerro Mayu IMG016 22:11:51		IMG280	06:15:18
Mamalluca IMG005 22:55:10 IMG055 03:05:10 Valle del Sol IMG008 21:30:47 IMG108 05:50:44 Del Pangue IMG019 23:13:45 IMG041 01:03:46 Pisco Elqui IMG006 21:41:21 IMG008 21:49:34 Cerro Mayu IMG016 22:11:51	Cancana	IMG001	21:21:33
Mamalluca IMG055 03:05:10 Valle del Sol IMG008 21:30:47 IMG108 05:50:44 Del Pangue IMG019 23:13:45 IMG041 01:03:46 Pisco Elqui IMG006 21:41:21 IMG008 21:49:34 Cerro Mayu IMG016 22:11:51		IMG260	06:29:57
Valle del Sol IMG008 21:30:47 IMG108 05:50:44 Del Pangue IMG019 23:13:45 IMG041 01:03:46 Pisco Elqui IMG006 21:41:21 IMG008 21:49:34 Cerro Mayu IMG016 22:11:51	Mamalluca	IMG005	22:55:10
Valle del Sol IMG108 05:50:44 Del Pangue IMG019 23:13:45 IMG041 01:03:46 Pisco Elqui IMG006 21:41:21 IMG008 21:49:34 Cerro Mayu IMG016 22:11:51		IMG055	03:05:10
Del Pangue IMG019 23:13:45 IMG041 01:03:46 Pisco Elqui IMG006 21:41:21 IMG008 21:49:34 Cerro Mayu IMG016 22:11:51	Valle del Sol	IMG008	21:30:47
Del Pangue IMG041 01:03:46 Pisco Elqui IMG006 21:41:21 IMG008 21:49:34 Cerro Mayu IMG016 22:11:51		IMG108	05:50:44
Pisco Elqui IMG006 21:41:21 IMG008 21:49:34 Cerro Mayu IMG016 22:11:51	Del Pangue	IMG019	23:13:45
Pisco Elqui		IMG041	01:03:46
IMG008 21:49:34 Cerro Mayu IMG016 22:11:51	Pisco Elqui	IMG006	21:41:21
Cerro Mayu		IMG008	21:49:34
IMG021 22:31:52	Cerro Mayu	IMG016	22:11:51
		IMG021	22:31:52

6.3.2. Áreas de interés

Una vez estimadas las localizaciones geográficas de las fuentes de CL para el lugar de estudio, es posible elegir áreas de interés en el cielo, realizando cortes en distintos azimut, y con ello estudiar las variaciones en NSB y CCT en función del ángulo cenital, es decir, se hacen barridos de toda el área encerrada entre dos azimut, partiendo desde el zenit hasta terminar en el horizonte (Figura 6.22).

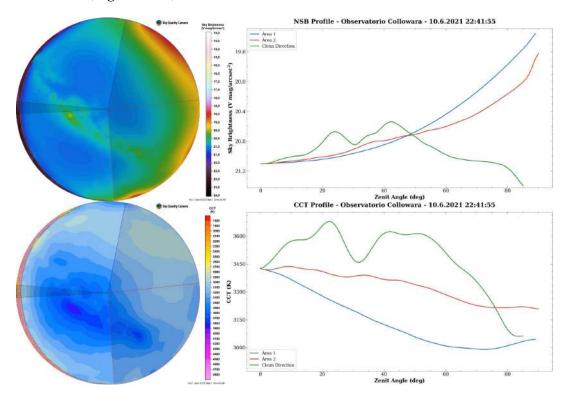


FIGURA 6.22: Se muestran áreas de interés para distintos rangos de azimut en azimut para el Área 1: 276°-349° (azul), Área 2: 184°-276° (rojo) y Clean Direction: 85°-93° (verde), utilizando la imagen IMG001 del O. Collowara. **Panel superior:** Izquierda: Mapa NSB en una proyección azimutal con las 3 áreas elegidas indicadas según su color. Derecha: NSB (eje y) en la banda V para las 3 áreas de interés en función del ángulo cenital (eje x) en grados. **Panel inferior:** Izquierda: Mapa CCT en una proyección azimutal con las 3 áreas elegidas indicadas según su color. Derecha: CCT (eje y) para las 3 áreas en función del ángulo cenital (eje x) en grados.

Para cada sitio se eligen tres áreas circulares en la imagen, dos de las cuales son direcciones de azimut donde hay fuentes de origen artificial, y una tercera área que contempla una zona virtualmente libre de CL con el fin de comparar zonas contaminadas y no contaminadas lumínicamente. Esta área no contaminada se denomina "Clean Direction" y también se corrobora con los datos del instrumento VIIRS que el rango de azimut para dicha área no contenga fuentes de origen artificial.

Posteriormente para cada sitio de estudio se construyeron perfiles NSB y perfiles CCT para estudiar la distribución de ambas variables en función del ángulo cenital y en función del azimut. Cuando se estudia el NSB/CCT en función del ángulo cenital, el parámetro de azimut queda fijo en un cierto rango, mientras que cuando se estudia el NSB/CCT en función del azimut, el parámetro de elevación (complemento del ángulo cenital) es constante.

La construcción de un **perfil NSB/CCT en función del azimut**, también llamado "anillo azimutal", consiste en fijarse a una altura sobre el horizonte con espesor de un grado, y luego barrer toda la información contenida en dicho anillo sobre los 360° de azimut. Luego de esto es posible confeccionar gráficos de NSB y CCT en función de todos los azimut de la esfera celeste para una altura estándar de un grado sobre el horizonte.

Los perfiles de NSB/CCT en función del ángulo cenital se obtienen para cada una de las 3 áreas de interés en cada sitio de estudio, y luego se confeccion secuencias de imágenes (GIFs). Para crear el GIF de NSB y CCT se considera la primera y la última imagen de la noche, más las imagenes tomadas en cada hora exacta (11:00, 00:00, 01:00, etc.). En cada GIF se muestra una proyección azimutal en NSB/CCT, y el gráfico del perfil correspondiente.

Además se crean GIFs utilizando todos los frames de imágenes "Info Image" en cada sitio, como la que se muestra en la Figura 6.17. Los archivos GIF permiten ver la evolución de los mapas NSB y CCT a lo largo de la noche, así como también las variaciones de fuentes naturales y fuentes artificiales. La línea amarilla y naranja que se observa en cada GIF representan las proyecciones de los planos de la eclíptica y la Vía Láctea, respectivamente.

También se eligen "sectores" para estudiar sus variaciones en NSB y CCT en función del tiempo, utilizando todo el set de imágenes en cada jornada. Los sectores elegidos son las tres áreas de interés para cada sitio, otros sectores con fuentes artificiales visibles en las imágenes, y un círculo de cinco

grados alrededor del zenit.

6.3.3. Modelo GAMBONS

Por último, para complementar las mediciones de NSB se utiliza el modelo GAMBONS y las dos imágenes elegidas usadas en cada sitio de estudio (Tabla 6.4) para comparar los valores de NSB al zenit. Se hace una comparación cuantitativa directa entre el modelo y la imagen real tomando un círculo de cinco grados alrededor del zenit.

El modelo GAMBONS considera la radiancia del brillo del cielo vista por un observador como la suma de varias contribuciones, esto es, la luz estelar integrada, la luz galáctica difusa, la luz extragaláctica, la luz zodiacal y el airglow. Asimismo, cuando la luz ingresa a la atmósfera ésta se ve afectada por efectos de absorción y scattering antes de ser vista por el observador, dichos efectos también son considerados en el modelo. Luego, es posible obtener el brillo natural del cielo para una dada ubicación y fecha. La principal innovación GAMBONS con respecto a modelos anteriores es el uso del catálogo Gaia-EDR3 para obtener la luz estelar integrada (para estrellas más brillantes no consideradas en el catálogo Gaia se utiliza el catálogo Hipparcos). Más aún, al hacer uso de los datos de Gaia es posible obtener la radiancia en cualquier banda fotométrica. Los datos del modelo fueron extraídos a partir de la página oficial de GAMBONS utilizando los valores por defecto de airglow y aerosoles (ver Figura 6.23).

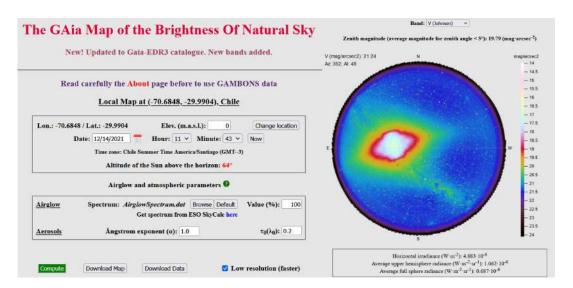


FIGURA 6.23: Visualización de la <u>página oficial</u> del modelo GAMBONS. Para extraer las imágenes del Modelo se deben ingresar la información geográfica del lugar, i.e., latitud, longitud y elevación; así como también la fecha y hora exacta de la imagen a comparar.

Capítulo 7

Resultados

7.1. El Sauce, Río Hurtado

7.1.1. Fuentes de CL

Las fuentes de CL que se encontraron están listadas en la Tabla 7.1 y también se incluye la distancia a la que se encuentran del Observatorio El Sauce. A continuación se indican los rangos en azimut para las fuentes de CL en una proyección azimutal en RGB (Figura 7.1), y también en la Figura 7.2 se indican las fuentes de CL para proyecciones cilíndricas en mapas NSB y CCT.

TABLA 7.1: Fuentes de CL identificadas que afectan el O. El Sauce ordenadas de manera ascendente según su azimut.

Lugar	Distancia (km)	Azimut (°)
Vicuña	49.1	2-13
Región Metropolitana	335.0	173-184
El Palqui - Monte Patria	34.0	201-221
Punitaqui	61.6	224-232
Ovalle	43.4	237-260
Andacollo	40.0	304-314
Coquimbo - La Serena	76.5	310-328

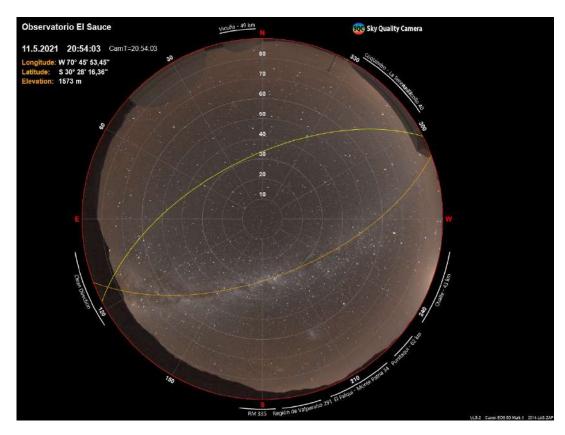
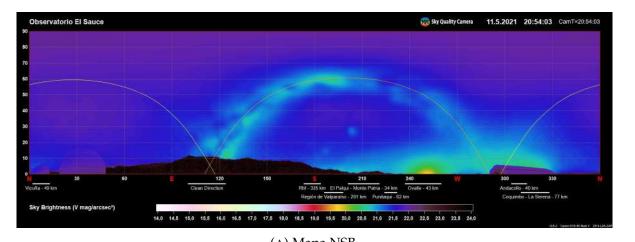



FIGURA 7.1: Proyección azimutal para la imagen IMG005 en RGB. En los bordes de la imagen se indican los valores de azimut al horizonte y los cuatro puntos cardinales. También se indican las fuentes de CL representadas por líneas blancas para su respectivo rango en azimut.

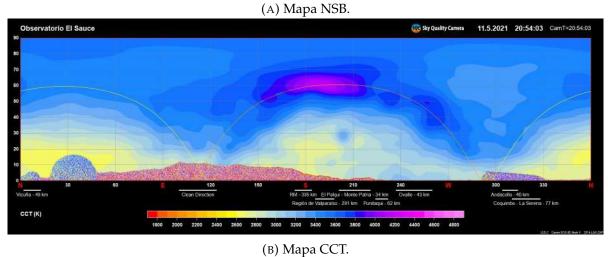


FIGURA 7.2: Proyecciones cilíndricas en (A) NSB y (B) CCT para la imagen IMG005 con las fuentes de CL identificadas.

Sitio de estudio	Área	Azimut área	Lugares	Azimut lugar	Distancia
(Observatorio)		(°)		(°)	(km)
El Sauce	1	304-328	Coquimbo - La Serena Andacollo	310-328 304-314	76.5 40.0
27 Swace	2	239-263	Ovalle	239-263	43.4
	Clean Direction	100-124	-	-	-

TABLA 7.2: Áreas de interés.

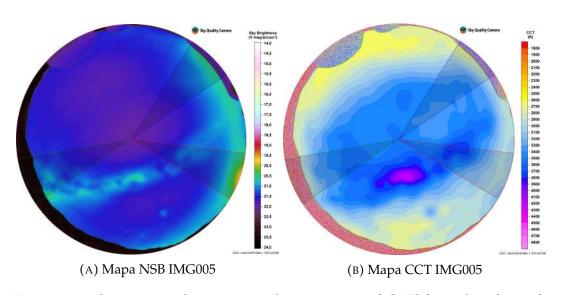


FIGURA 7.3: Se presentan las tres áreas de interés para el O. El Sauce listadas en la Tabla 7.2, en una proyección azimutal de NSB (a) y de CCT (b). La sección delimitada por el sector circular azul (Área 1) corresponde a dirección en que se ubica la ciudad de Andacollo y la ciudad de Coquimbo - La Serena, mientras que la región delimitada por el sector circular rojo (Área 2) contiene a la ciudad de Ovalle, y el sector circular verde corresponde a la Clean Direction.

La Figura 7.3 indica las tres áreas de interés en una proyección azimutal NSB y CCT. De la misma manera en la Tabla 7.2 se presentan las áreas interés seleccionadas para este sitio de estudio, su delimitación en azimut en la columna "Azimut área", junto a las delimitaciones en azimut de las fuentes de CL que contienen dichas áreas en la columna "Azimut lugar"; en este caso el nombre de los lugares que contienen las áreas elegidas corresponden al nombre de la comuna o región. Por último, en la columna "Distancia" se tiene la distancia en kilómetros a la que se encuentra cada fuente de CL del sitio de estudio. Las distancias se estimaron utilizando la herramienta "Measure distance" en la página Light Pollution Map.

7.1.2. Perfiles NSB y CCT

7.1.2.1. NSB/CCT vs azimut

En la Figura 7.4 se presenta el anillo azimutal a 6° de elevación para la imagen IMG005. Se eligió una elevación de 6° considerando las características topográficas del lugar. Cabe mencionar que a esta altura igualmente se tenían obstáculos (montañas y domos) atravesando el anillo elegido, por lo que solo se encontró información de NSB y CCT entre 175° y 360° en azimut (zona sin obstáculos). Se encontraron dos máximos en NSB (Figura 7.4, línea azul), para 252° y 315° en azimut, que a su vez tienen una caída en CCT para los mismos azimut. El máximo a 252° en azimut alcanza un valor de NSB de 20.42 mag/arcsec² y un valor CCT de 2,962 K.

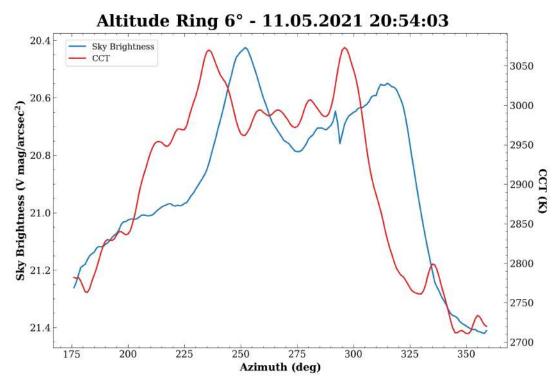


FIGURA 7.4: Anillo azimutal para la imagen IMG005. La línea azul indica el NSB y la línea roja indica el CCT, ambas magnitudes en función del azimut.

7.1.2.2. NSB/CCT vs ángulo cenital

A partir de la Tabla 7.2 se construyen los perfiles de NSB y CCT para las tres áreas de interés elegidas en este sitio de estudio. En la Figura 7.5a, las

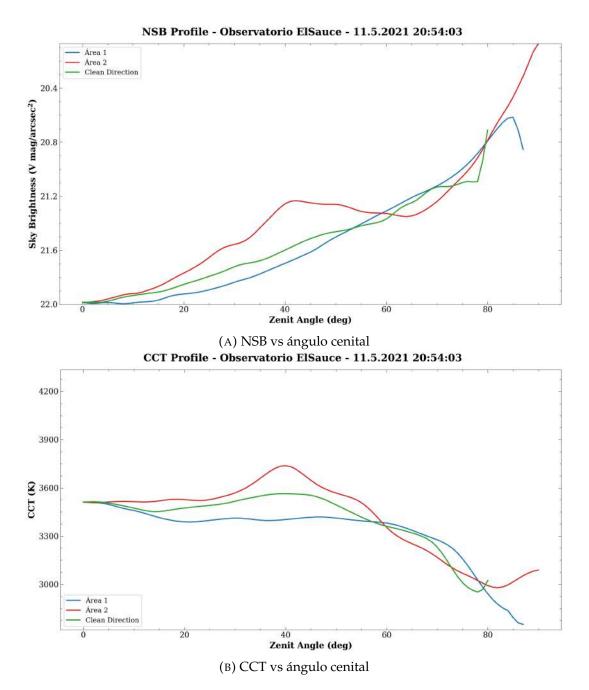


FIGURA 7.5: (A): NSB en la banda V para las 3 áreas de interés indicadas en la Figura 7.3 en función del ángulo cenital. (B): CCT en función del ángulo cenital para las mismas áreas. El gráfico fue construido a partir de la imagen IMG001.

tres áreas de interés muestran un aumento en NSB con el ángulo cenital. Se observa cómo el NSB para el Área 1 (línea azul, i.e., Andacollo y Coquimbo - La Serena) y 2 (línea roja, i.e., Ovalle) aumenta de manera exponencial cuanto mayor es el ángulo cenital. El NSB del Área 1 alcanza el valor de 20.61 mag/arcsec² en 85°. En el caso del Área 2, para 90° en ángulo cenital, el NSB es 20.07 mag/arcsec².

Los GIFs de las variaciones temporales en los perfiles de NSB y CCT están disponibles en los siguientes enlaces: perfil NSB; perfil CCT. Se encontró una disminución del NSB para el Área 2 de media magnitud entre las 03:00 y las 04:00.

7.1.3. Series temporales NSB y CCT

El recurso visual con todas las Info Images para el Observatorio El Sauce está diponible en: GIF Info Images. A partir de las 03:00 comienza a disminuir el NSB entre 239° y 263° en azimut, dirección en la cual se encuentra la ciudad de Ovalle. Al inicio de la noche, por el horizonte en el mapa CCT se observaron temperaturas bajas (2,600 K) con respecto a la temperatura del zenit (3,900 K).

TABLA 7.3: Sectores elegidos para estudiar variaciones de NSB y CCT en función del tiempo. En todos los casos (excepto en el caso del sector "Zenit Circle") la altura se consideró desde la separación entre el Sky Border y el cielo, añadiendo 20° en altura.

Sector	Azimut (°)
Clean Direction	100-124
Coquimbo - La Serena; Andacollo	304-328
Ovalle	239-263
R. de Valparaíso; RM	173-198
Vicuña	03-09
Zenit Circle ^a	00-00

 $^{^{\}it a}$ Círculo de 5° alrededor del zenit.

En la Figura 7.6 se muestra la variación de NSB y CCT de cada sector mostrado en la Tabla 7.3 en función del tiempo. El sector predominante en

NSB a lo largo de toda la noche es Ovalle, excepto en el tramo entre las 03:20 y 04:20 donde el sector Zenit Circle es mayor. También se encontró una disminución en NSB y CCT para los sectores Ovalle y Coquimbo - La Serena; Andacollo a lo largo de la noche. Para los demás sectores (Clean Direction, Vicuña, R. Valparaíso; RM) se tienen aumentos en NSB (más notable para la Clean Direction desde el comienzo de la noche hasta las 23:00) hacia el final de la noche.

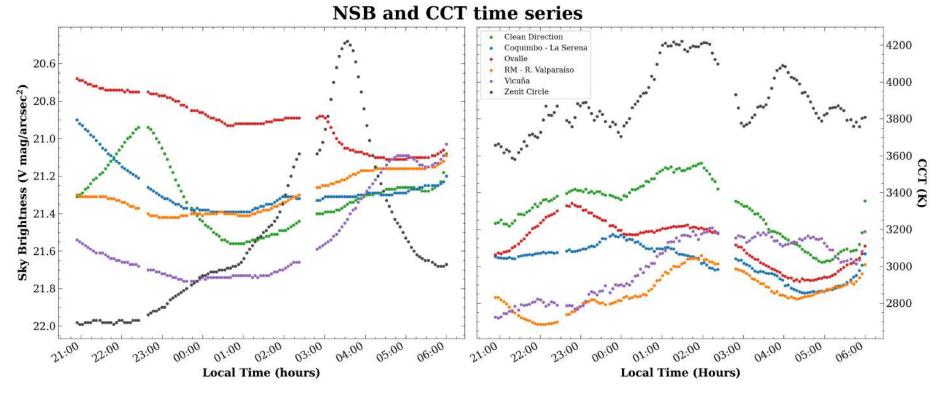


FIGURA 7.6: **Panel izquierdo**: NSB en función de la hora local para los sectores indicados en la Tabla 7.3. **Panel derecho**: CCT en función de la hora local para los mismos sectores. En la leyenda se indica el color para cada sector elegido.

7.1.4. Comparación SQC vs GAMBONS

En la Figura 7.7 se presenta la comparación entre el modelo GAMBONS y la imagen IMG005.

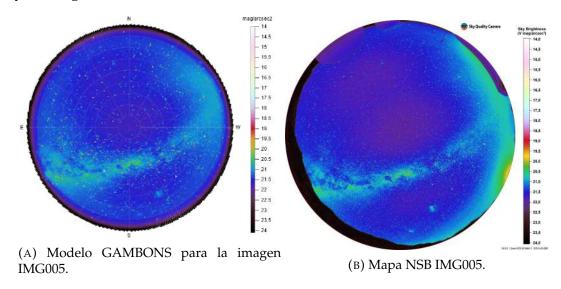


FIGURA 7.7: Comparación entre el modelo GAMBONS (a) y la imagen real IMG005 (b), para el día 11.05.2021 a las 20:54. La barra de color indica el NSB en unidades de mag/arcsec² y en los bordes de la imagen del modelo se indican los cuatro puntos cardinales.

La comparación entre el círculo cenital de 5° entre el modelo y las imágenes SQC IMG001 e IMG089 se muestran en la Tabla 7.4. Asimismo en la Tabla 7.5 se tienen los valores de NSB y CCT promedio para el zenit y el punto más oscuro

TABLA 7.4: Valores del NSB para los datos reales y para el modelo GAMBONS, considerando el NSB dentro de un círculo de 5° alrededor del zenit.

Imagen	NSB_{SQC} (mag/arcsec ²)	$NSB_{GAMBONS}$ (mag/arcsec ²)	ΔNSB
IMG005	21.87	21.68	0.19
IMG131	21.63	21.48	0.15

El punto más oscuro del cielo representa el mayor valor de NSB en mag/arcsec² para un lugar en cierto lugar del cielo en (*azimut, angulo cenital*) cierta coordenada en azimut y ángulo cenital. En la Tabla 7.5 se presenta el promedio del punto más oscuro como el promedio de un círculo de 5° alrededor del zenit.

Se podría pensar que el punto más oscuro corresponde a alguna coordenada en azimut y altitud cercana zenit ya que estaría menos afectado por la CL proveniente del horizonte. Sin embargo en los GIF Info Images se ha observado que el punto más oscuro puede estar a altidudes menores a 40° y puede cambiar su ubicación a lo largo de la noche.

TABLA 7.5: Valores de NSB y CCT promediados a lo largo de toda la noche para (i) el zenit alrededor de un círculo cenital de 5° y para el punto más oscuro del cielo. El error corresponde a la desviación estándar en el set de imágenes

	Zenit	Punto más oscuro
NSB_{prom} (mag/arcsec ²)	21.53 ± 0.42	21.99 ± 0.05
CCT_{prom} (K)	$3,895 \pm 173$	-

7.1.5. Análisis

NSB/CCT vs azimut. Utilizando los datos del instrumento VIIRS mediante la página Light Pollution Map, se identifica que el máximo a 252° en azimut (Figura 7.4) corresponde a la ciudad de Ovalle. El máximo que se encuentra entre 312° y 318° sólo incluiría a la ciudad de Coquimbo, ya que el centro de la ciudad de La Serena se encuentra a 324° en azimut. A pesar de que el máximo en NSB no incluya a la ciudad de La Serena, su contribución es 0.15 mag/arcsec² menor a la de Coquimbo (que alcanza un valor en NSB de 20.55 mag/arcsec²).

NSB/CCT vs ángulo cenital. En este sitio de estudio la mayor contribución artificial al horizonte en NSB proviene de la ciudad de Ovalle. En los GIFs de los perfiles NSB/CCT (perfil NSB; perfil CCT) se observa cómo el NSB del Área 2 (dirección en la que se encuentra Ovalle) disminuye a lo largo de la noche, indicando que las fuentes artificiales también experimentan variaciones en escalas de tiempo cortas. Ya que para este lugar no se contaba con información meteorológica, no se puede afirmar si estas variaciones estan correlacionadas a nubes o cambios en la iluminación de la ciudad durante la noche. También a las 05:59 se observa el efecto de la Vía Láctea en

la forma de los perfiles de NSB entre 20° y 50° en azimut para las Áreas 1 y 2, generando máximos en los perfiles (ver GIF NSB). Para la Clean Direction hacia el final de la noche se ve un aumento al horizonte debido a la luz zodiacal que aparece en la dirección este antes del amanecer. Lo anterior se puede observar la proyección azimutal del GIF CCT a las 05:59, donde se observa que las fuentes naturales mencionadas anteriormente tienen valores de CCT más altos con respecto a valores al horizonte.

Series temporales NSB y CCT. Los aumentos de NSB vistos en los sectores sectores Clean Direction, Vicuña y R. Valparaíso; RM se atribuyen a los efectos de la Vía Láctea y la luz zodiacal que se ven en el recurso GIF Info Images. En este caso deberíamos esperar un aumento en los valores de CCT debido a estas fuentes naturales, sin embargo al final de la noche el CCT para los sectores Clean Direction y R. Valparaíso; RM comienza a disminuir. La razón por la que no se observan aumentos en los valores CCT para estos sectores se podría explicar con el hecho de que desde el comienzo de la noche ya se tienen valores en CCT bajos (en el rango de 2,900 K) en las direcciones norte y sur, presumiblemente por las fuentes artificiales (ver GIF Info Images), que podrían estar contrarrestando la subida de CCT producto de las fuentes naturales que se espera ver.

Entre las 05:07 entre 120° y 170° en azimut, el CCT al horizonte es menor a 2,700 K, pero en esa dirección (sureste) no se tienen ciudades/poblados y tampoco se perciben contribuciones al NSB en el horizonte para ese mismo rango en azimut. Por ende, los valores bajos en CCT podrían estar asociados a la presencia de fuentes artificiales locales en las cercanías del lugar.

En este sitio también se puede observar el efecto de la Vía Láctea en el brillo del cielo al zenit. Al comienzo de la noche el NSB cenital es de aproximadamente 22.0 mag/arcsec², y cuando la Vía Láctea se encuentra en el zenit, el NSB cenital alcanza las 20.5 mag/arcsec², superando tanto en NSB como en CCT a los demás sectores (véase Figura 7.6).

Comparación con modelo GAMBONS. Si bien en este lugar se pueden ver los impactos de las fuentes artificiales tanto en NSB como en CCT, no se observan grandes variaciones entre el modelo con respecto a las imágenes IMG005 e IMG131, además es posible ver casi en su totalidad la Vía Láctea durante la noche, y al amanecer la luz zodiacal también es fácilmente visible.

7.2. Collowara, Andacollo

7.2.1. Fuentes de CL

Las fuentes de CL que se encontraron están listadas en la Tabla 7.6 y también se incluye la distancia a la que se encuentran del Observatorio Collowara. La Figura 7.8 muestra una proyección azimutal en RGB y por otro lado en la Figura 7.9 se muestran proyecciones cilíndricas en mapas NSB y CCT donde se indican las fuentes de CL identificadas para el Observatorio Collowara.

TABLA 7.6: Fuentes de CL identificadas que afectan el O. Collowara ordenadas de manera ascendente según su azimut.

Lugar	Distancia (km)	Azimut (°)
Vicuña	41.5	51-62
Región Metropolitana	360.0	169-180
Ovalle	40.0	189-208
Mina Carmen de Andacollo	2.3	206-275
Andacollo	2.4	276-4
Coquimbo - La Serena	39.0	309-342

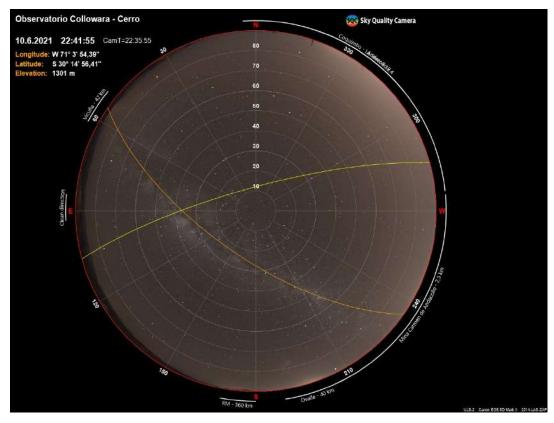
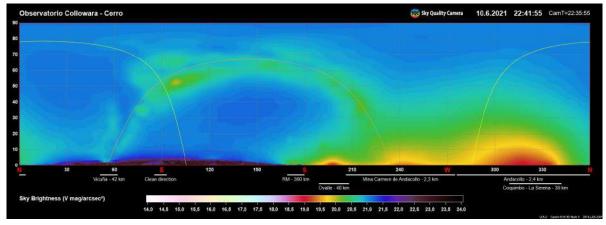
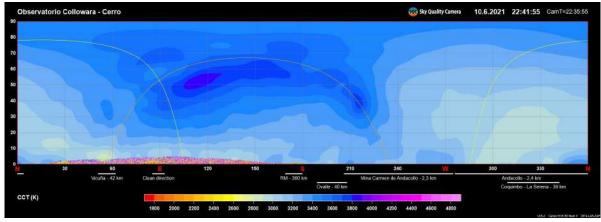




FIGURA 7.8: Proyección azimutal para la imagen IMG001 en RGB. En los bordes de la imagen se indican los valores de azimut al horizonte y los cuatro puntos cardinales. También se indican las fuentes de CL representadas por líneas blancas para su respectivo rango en azimut.

(A) Mapa NSB.

(B) Mapa CCT.

FIGURA 7.9: Proyecciones cilíndricas en (A) NSB y (B) CCT para la imagen IMG005 con las fuentes de CL identificadas.

Se eligieron tres áreas de interés, haciendo distintos cortes en azimut para cada una de las áreas. En particular, para este sitio de estudio, se encontró que prácticamente toda la parte Oeste del hemisferio superior se ve afectada por CL. Considerando las contribuciones artificiales en la Figura 7.9, se decidió dividir el hemisferio Oeste en dos áreas:

- Área 1: Entre 276° a 349° en azimut, que contiene la ciudad de Andaco-llo, así como también la ciudad de Coquimbo y La Serena.
- Área 2: Entre 184° a 276° en azimut, que contiene la ciudad de Ovalle y la mina Carmen de Andacollo.
- Clean Direction: Entre 85° a 93° en azimut, designada como una región libre de CL.

La división entre las Áreas 1 y 2 se fijó en 276°, debido a que se estimó, a partir del instrumento VIIRS, que en este azimut termina la extensión de la Mina y comienza la ciudad de Andacollo. Adicionalmente, los limites de las áreas se eligieron considerando el azimut al horizonte en que el NSB es mayor a 20.15 mag/arcsec². Para el Área 1 este criterio se cumple en 349° y para el Área 2 esto ocurre a 184° en azimut.

Cabe señalar que si se quieren comparar distintas áreas del cielo, idealmente las superficies esféricas consideradas deberían ser equivalentes. Sin embargo, en la práctica esto no siempre es posible, ya que por ejemplo el impacto de la CL generada por una ciudad está condicionada tanto a su número de habitantes (Walker, 1977) como a su distancia del lugar de estudio y a la topografía local. Por ende, a la hora de comparar el efecto de distintas cuidades, al horizonte sus extensiones en azimut podría resultar diferentes. Por ejemplo, en la Figura 6.20 se observa que la extensión de luz artificial de Ovalle (111,272 habitantes¹) es menor a la extensión de la conurbación de Coquimbo - La Serena (448,784 habitantes), ya que su número de habitantes es menor a pesar que las distancias son practicamente equivalentes. Por lo que

¹Fuente para el número de habitantes de ciudades/comunas de la Región de Coquimbo: resultados.censo2017.cl

si se quisieran estudiar estas dos áreas, se deberían elegir distintas extensiones en azimut, tomando como una primera aproximación las extensiones indicadas en la Tabla 7.6, y también examinando las zonas contaminadas en las imágenes.

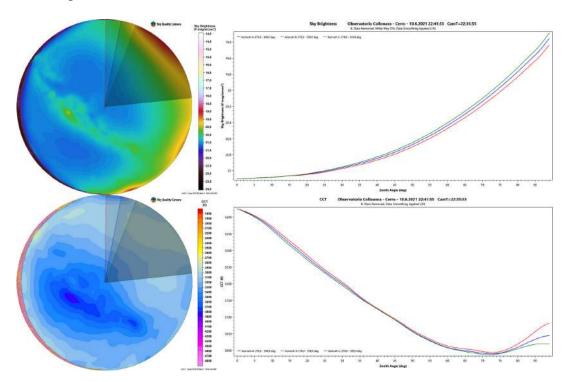


FIGURA 7.10: En la Figura se muestran 3 potenciales elecciones en azimut para el **Área 1**: 276°-249° (azul), 276°-359° (rojo) y 276°-339° (verde), utilizando la imagen IMG001. **Panel superior:** Izquierda: Mapa NSB en una proyección azimutal con las 3 áreas elegidas indicadas según su color. Derecha: NSB (eje y) en la banda V para las 3 áreas preseleccionadas en función del ángulo cenital (eje x) en grados. **Panel inferior:** Izquierda: Mapa CCT en una proyección azimutal con las 3 áreas elegidas indicadas según su color. Derecha: CCT (eje y) para las 3 áreas en función del ángulo cenital (eje x) en grados.

A partir de lo anterior, se preseleccionaron 3 potenciales rangos en azimut para el Área 1, como se muestra en la Figura 7.10, para estudiar como varían los valores de NSB y CCT en función del ángulo cenital, cuando se eligen dos áreas distintas a comparar.

En la Figura 7.10, la tendencia de las 3 lineas de la derecha, tanto en NSB como en CCT en función del ángulo cenital es el mismo, por lo que hubiese sido válido elegir cualquiera de las 3 áreas indicadas en la Figura. Finalmente se decidió elegir el área que va de 276°-249° en azimut (línea azul en la Figura 7.10), ya que el límite superior del área correspondiente a la línea verde no

considera toda la zona que sufre CL, más aún, deja fuera parte de la conurbación de La Serena; y por otra parte, la línea roja contiene zonas a las afueras de La Serena (como Gabriela Mistral) que no son de particular interés con respecto a la zona de mayor interés, la ciudad de Coquimbo - La Serena.

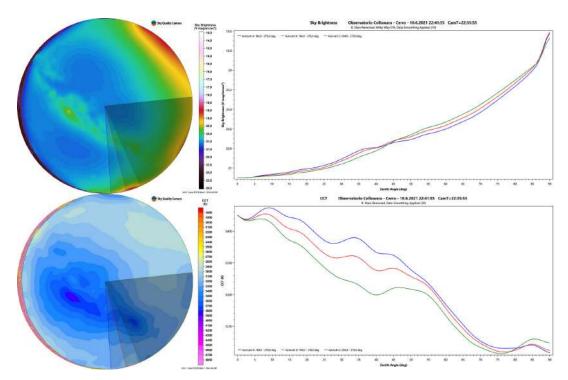


FIGURA 7.11: Al igual que para el caso del Área 1, se muestran 3 potenciales elecciones en azimut para el **Área 2**: 184°-276° (azul), 194°-276° (rojo) y 204-276° (verde), utilizando la imagen tomada con la cámara "ULS-2", el día 10.06.2021 a las 22:35:55. **Panel superior:** Izquierda: Mapa NSB en una proyección azimutal con las 3 áreas elegidas indicadas según su color. Derecha: NSB (eje y) en la banda V para las 3 áreas preseleccionadas en función del ángulo cenital (eje x) en grados. **Panel inferior:** Izquierda: Mapa CCT en una proyección azimutal con las 3 áreas elegidas indicadas según su color. Derecha: CCT (eje y) para las 3 áreas en función del ángulo cenital (eje x) en grados.

Análogamente al procedimiento para definir el Área 1, se eligieron 3 potenciales áreas para definir el Área 2. En este caso la tendencia de las líneas es similar, habiendo un mayor desplazamiento entre las mismas en el gráfico de CCT vs ángulo cenital de la Figura 7.11. Dicho desplazamiento es más evidente a ángulos cenitales menores a 55°. Esto se atribuye a la presencia de una menor o mayor parte de la Vía Láctea en cada una de las áreas elegidas. En el caso del área azul, queda encerrada una porción mayor de la Vía Láctea, lo cual implica un aumento en el CCT de dicha área. Se decidió elegir

el área mayor (184°-276°) en azimut, ya que contenía la zona de interés contaminada lumínicamente (Mina Carmen de Andacollo), y del mismo modo quedaba incluida la ciudad de Ovalle.

Finalmente se escogió un área virtualmente libre de CL, la que se denominó como "Clean Direction". Se eligió un área con estas características con el fin de realizar una comparación entre zonas contaminadas y no contaminadas lumínicamente. Está área fue delimitada por los azimut 85° y 93°, como se muestra en la Figura 7.12, donde los datos satelitales de VIIRS indican que entre dichos azimut no hay ninguna fuente de origen artificial.

En la Figura 7.13 se muestra un perfil de elevación para el azimut central de la zona Clean Direction. En la Figura se observa la ciudad de Las Flores, Argentina, dentro de la zona delimitada para la Clean Direction. Sin embargo, no hay visibilidad hacia dicha ciudad debido a la presencia de la Cordillera de Los Andes.

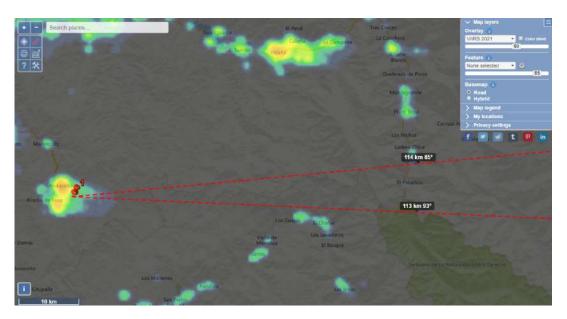


FIGURA 7.12: Elección del área Clean Direction a través del mapa de fuentes artificiales provistas por los datos del instrumento VIIRS. Las líneas rojas discontinuas representan el área designada como libre de CL. El push pin rojo representa la ubicación de la cámara.

En la Figura 7.14 se muestran las áreas de interés representadas por sectores circulares en los mapas NSB y CCT. En la Tabla 7.7 se muestran las áreas de interés elegidas para este sitio de estudio.

FIGURA 7.13: Perfil de elevación para el azimut central (91°) de la zona Clean Direction obtenido a partir de Google Earth. En el eje x del gráfico se tiene la distancia en kilómetros, y el eje y representa la altura en metros.

TABLA 7.7: Áreas de interés.

Sitio de estudio	Área	Azimut área	Lugares	Azimut lugar	Distancia
(Observatorio)		(°)		(°)	(km)
	1 276-349	Coquimbo - La Serena	309-342	39.0	
			Andacollo	276-4	2.4
Collowara	2	184-276	Mina Carmen	206-275	2.3
			Ovalle	189-208	40.0
	Clean Direction	85-93	-	-	-

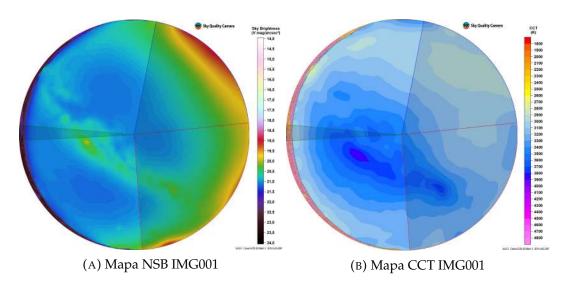


FIGURA 7.14: Se presentan las tres áreas de interés de la Tabla 7.7 para la imagen IMG001, en una proyección azimutal de NSB (Figura 7.14a) y de CCT (Figura 7.14b). La sección delimitada por el sector circular azul (Área 1) corresponde a dirección en que se ubica la ciudad de Andacollo y la ciudad de Coquimbo - La Serena, mientras que la región delimitada por el sector circular rojo (Área 2) contiene a la mina Carmen de Andacollo junto a la ciudad de Ovalle, y el sector circular verde corresponde a la zona virtualmente libre de luz artificial, denominada Clean Direction.

7.2.2. Perfiles NSB y CCT

7.2.2.1. NSB/CCT vs azimut

Para el caso del Observatorio Collowara se realizó un anillo azimutal en donde se encontraron tres máximos en NSB (Figura 7.15,línea azul), a 198°, 243° y un doble peak en 297° y 329° en azimut. En CCT (línea roja) se tienen mínimos en estos mismos puntos de azimut.

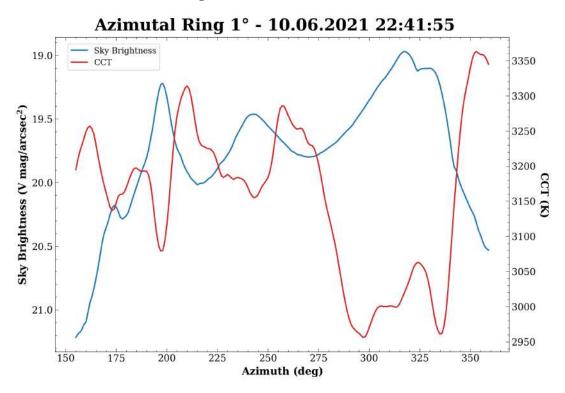


FIGURA 7.15: Anillo azimutal para la imagen IMG001. La línea azul indica el NSB y la línea roja indica el CCT, ambas magnitudes en función del azimut. Sólo se tiene el rango en azimut de 150° a 360°, ya que para azimut menores que 150° no se cuenta información de cielo debido a la presencia de montañas sobre el horizonte (ver Figura 7.9).

7.2.2.2. NSB/CCT vs ángulo cenital

En la Figura 7.16a, se observa cómo el NSB para el Área 1 (línea azul, i.e., Andacollo y Coquimbo - La Serena) y para el Área 2 (línea roja, i.e., Mina Carmen de Andacollo y Ovalle) aumenta de manera exponencial cuanto mayor es el ángulo cenital. El NSB del Área 1 supera las 19,5 mag/arcsec² a ángulos cenitales mayores a 85°, llegando hasta 19,3 mag/arcsec² en 89°. En

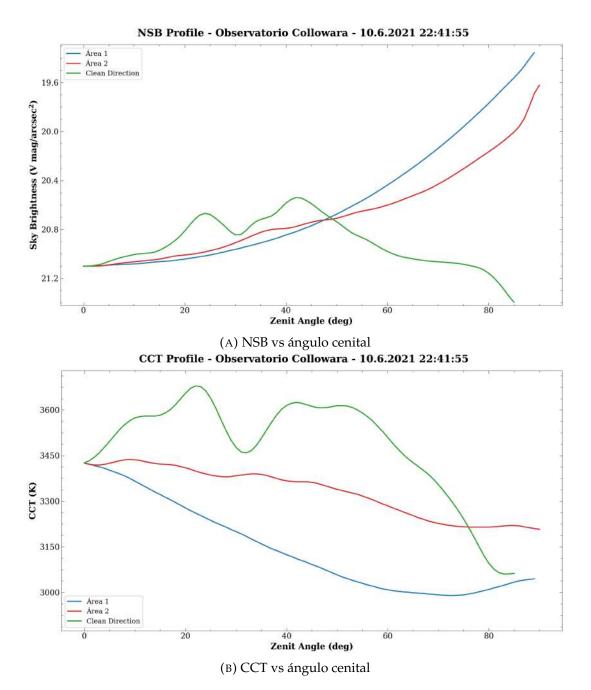


FIGURA 7.16: (a) Gráfico NSB en la banda V y (b) gráfico CCT. Ambas magnitudes en función del ángulo cenital construidos a partir de la imagen IMG001.

el caso del Área 2, para 90° en ángulo cenital, el NSB es 19,6 mag/arcsec². En cambio, el NSB de la Clean Direction (línea verde) disminuye a medida que aumenta el ángulo cenital.

Los GIF de NSB/CCT en función del ángulo cenital están disponibles en: perfil NSB; perfil CCT. Se encontró que la Vía Láctea pasa a través de las distintas áreas de interés a lo largo de la noche (más evidente en los perfiles NSB).

7.2.3. Series temporales NSB y CCT

La composición de todas las Info Images para el Observatorio Collowara se encuentra en el siguiente enlace: GIF Info Images. A las 23:03 se aprecia una "mancha" en el mapa CCT a 317° en azimut a una altitud de 22° aproximadamente. La mancha se hace más grande a medida que pasa el tiempo y no es apreciable en el mapa NSB.

Los sectores para estudiar las variaciones temporales en NSB y CCT en función del tiempo se muestran en la Tabla 7.8.

TABLA 7.8: Sectores elegidos para estudiar sus variaciones de NSB y CCT en función del tiempo. En todos los casos (excepto en el caso del sector "Zenit Circle") la altura se consideró desde la separación entre el Sky Border y el cielo, añadiendo 20° en altura.

Sector	Azimut (°)
Andacollo; Coquimbo - La Serena	276-349
Mina; Ovalle	184-276
Clean Direction	85-93
Zenit Circle ^a	00-00
Vicuña	51-62
RM (Región Metropolitana)	169-180

^a Círculo de 5° alrededor del Zenit.

En la Figura 7.17 se muestra el gráfico de las variaciones de NSB y CCT en función del tiempo para los distintos sectores elegidos en la Tabla 7.8. En el gráfico de NSB, el mayor contribuyente al NSB a lo largo de toda la noche es

el sector de Andacollo; Coquimbo - La Serena, alcanzando su máximo valor en NSB de 19.66 mag/arcsec² al final de la jornada. Luego viene la Mina; Ovalle, que también alcanza su mayor valor de NSB de 20.06 mag/arcsec² al final de la jornada.

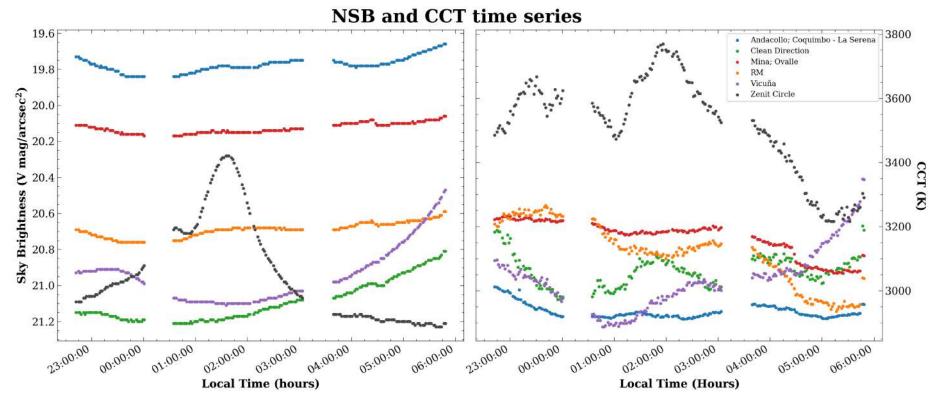


FIGURA 7.17: **Panel izquierdo**: NSB en función de la hora local para los sectores indicados en la Tabla 7.8. **Panel derecho**: CCT en función de la hora local para los mismos sectores. En la leyenda se indica el color para cada sector elegido.

7.2.4. Comparación SQC vs GAMBONS

En la Figura 7.18a se muestra la simulación de las fuentes naturales vistas desde el Observatorio Collowara hecha por el modelo GAMBONS, en contraste a la imagen real (Figura 7.18b). En la Figura 7.18a se puede apreciar tanto la Vía Láctea y como la luz zodiacal por el Oeste, mientras que en la imagen real solo es apreciable la Vía Láctea.

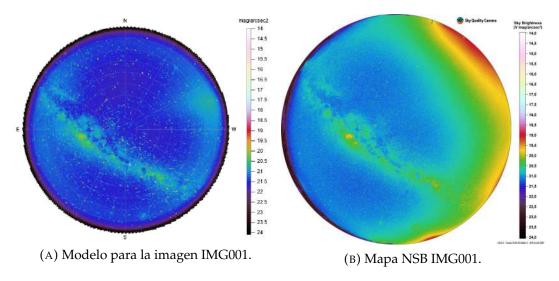


FIGURA 7.18: Comparación entre el modelo GAMBONS (a) y la imagen real IMG001 (b), para el día 10.06.2021 a las 22:42. La barra de color indica el NSB en unidades de mag/arcsec² y en los bordes de la imagen del modelo se indican los cuatro puntos cardinales.

A partir del modelo se obtuvo el NSB contenido en un círculo cenital de 5°. Luego se calculó el NSB para la imagen SQC utilizando un círculo cenital de igual extensión. Los valores calculados se presentan en la Tabla 7.9 utilizando las imágenes IMG001 e IMG239.

TABLA 7.9: Valores del NSB para los datos reales y para el modelo GAMBONS, considerando el NSB dentro de un círculo de 5° alrededor del zenit.

Imagen	NSB_{SQC} (mag/arcsec ²)	$NSB_{GAMBONS}$ (mag/arcsec ²)	ΔNSB
IMG001	21.05	21.47	0.42
IMG239	21.15	21.64	0.49

En la Tabla 7.10 se presenta el promedio del punto más oscuro y el promedio del círculo de 5° alrededor del zenit. Se encontró que tanto el Observatorio Collowara como el Observatorio Cerro Mayu mostraron puntos menos oscuros (menor valor de NSB).

TABLA 7.10: Valores de NSB y CCT promediados a lo largo de toda la noche para (i) el zenit alrededor de un círculo cenital de 5° y para el punto más oscuro del cielo. El error corresponde a la desviación estándar en el set de imágenes

	Zenit	Punto más oscuro
NSB_{prom} (mag/arcsec ²)	20.93 ± 0.29	21.37 ± 0.07
CCT_{prom} (K)	$3,510 \pm 156$	-

7.2.5. Análisis

NSB/CCT vs azimut. Los máximos de NSB (línea azul) en la Figura 7.15, corresponden a Ovalle, la Mina Carmen de Andacollo, y el máximo con un doble peak a 297° y 329° corresponde a la ciudad de Andacollo y la ciudad de Coquimbo - La Serena respectivamente. Fue posible identificar el origen de los máximos ya que sus azimut centrales coinciden con los azimut de las fuentes artificiales identificadas con la página Light Pollution Map en la Tabla 7.6. En la Figura 7.15, también se puede corroborar que estos máximos en NSB efectivamente corresponden a fuentes artificiales, ya que los aumentos en NSB se corresponden con una disminución del CCT (línea roja), donde CCT más bajos se asocian a la presencia de fuentes artificiales. La mayor contribución al NSB en el gráfico corresponde a la dirección en azimut en que encuentra la ciudad de Andacollo junto a la ciudad de Coquimbo - La Serena

NSB/CCT vs ángulo cenital. En la Figura 7.14 se observa que dentro del Área 1 queda superpuesta la ciudad de Coquimbo y La Serena con la ciudad de Andacollo, ya que se encuentran en la misma dirección en azimut. Debido a esto no es posible determinar la contribución de cada ciudad por separado, lo cual podría llevar a subestimar la contribución de la mina

Carmen de Andacollo con respecto a la ciudad *per se*. La contribución de las fuentes artificiales en el mapa CCT llega hasta al zenit (ver Figura 7.14b), lo cual se ve respaldado en en hecho de que hay valores de CCT más bajos en zonas cercanas al zenit con respecto al CCT de la Vía Láctea.

En la Figura 7.16a, hay aumentos de NSB para el área de interés Clean Direction a los ángulos cenitales de 25° y 44°, y a su vez en la Figura 7.16b se tienen aumentos en valores de CCT para estos mismos ángulos cenitales. Este aumento en NSB se atribuye a la presencia de la Vía Láctea dentro del área elegida para la Clean Direction ya que paralelamente hay un aumento en CCT (ver Figura 7.14).

Por otra parte, en el mapa CCT (véase Figura 7.16b) se tienen valores más bajos a partir del zenit para las Áreas 1 y 2 con respecto a la Clean Direction. Las diferencias entre el CCT del Área 1 y 2 podrían estan relacionadas al tipo de iluminación utilizada en las distintas zonas. Además, para el Área 1 a partir de ángulos cenitales mayores a 75° el CCT comienza a aumentar, lo que se explicaría con el hecho de está presente la luz zodiacal hacia el oeste después del atardecer.

En el transcurso de la noche, la Vía Láctea se acerca hacia el horizonte, y su contribución pareciera ser cada vez menor frente a la presencia de las fuentes artificiales en las Áreas 1 y 2 (ver (perfil NSB; perfil CCT) se puede observar el paso de la Vía Láctea a través de las distintas áreas de interés a lo largo del tiempo (más evidente en los perfil NSB). Más aún, esta fuente natural no afecta la tendencia exponencial de los perfiles de NSB para ángulos cenitales mayores a 50°, por lo que la forma del perfil está dominada por la contribución de fuentes artificiales.

Series temporales NSB y CCT. En el mapa NSB (ver GIF Info Images), se observa la pérdida de la visibilidad de la Vía Láctea a medida que transcurre la noche debido a la CL que hay en la parte oeste del hemisferio superior del cielo nocturno de Collowara. También, por la zona este, a partir de las 04:30 aproximadamente, es posible apreciar la contribución de la luz zodiacal, que a su vez muestra valores de CCT similares (3,500 K) a la Vía

Láctea. Esta contribución natural se logra apreciar mejor antes del amanecer en la parte este de la bóveda celeste ya que se encuentra menos contaminada lumínicamente con respecto a la parte oeste.

En el GIF también se observan fluctuaciones en NSB y CCT, que son más apreciables en el mapa CCT. La causa de la mancha que aparece a las 23:03 y de las variaciones más visibles en CCT se atribuye a la variabilidad del estado meteorológico de las nubes en esa noche, en particular a la presencia de nubes sobre la ciudad de Coquimbo - La Serena, que se puede observar en el recurso visual presentado en la Tabla 6.3. En este escenario se puede ver cómo la presencia de nubes actúa como factor amplificaror de las fuentes de origen artificial que afectan a este sitio de estudio, como ya se ha demostrado en estudios previos (Jechow et al. 2017; Jechow et al. 2018).

Las contribuciones de Vicuña y la RM son mucho menor (panel izquierdo Figura 7.17), sin embargo, se destaca la contribución de la RM frente a la de Vicuña, que pese a estar a más de 350 km de distancia del Observatorio, tiene una mayor contribución en NSB que la ciudad de Vicuña, que se encuentra a 50 km de distancia.

La forma en que varía el NSB del sector Zenit Circle en la Figura 7.17, es debido al paso de la Vía Láctea por el zenit, lo cual aumenta el valor de NSB de este sector alcanzando las 20.28 mag/arcsec² a las 01:26.

En general no se observan variaciones significativas a lo largo de la noche en los distintos sectores. Sin embargo, se ve que tanto en la Clean Direction como en el sector de Vicuña, el NSB comienza a aumentar hacia el final de la noche. Esto se debe a la aparición de la luz zodiacal hacia el este, que a su vez se puede corroborar en panel derecho de la Figura 7.17, donde se observa un aumento en el CCT en correspondencia al aumento del NSB para estos dos sectores.

Comparación con modelo GAMBONS. En la Tabla 7.9, al comienzo de la noche se observa una pérdida de visibilidad del cielo nocturno de 0.42 mag/arcsec², con respecto a un cielo ideal (modelo), mientras que esta diferencia es mayor al final de la noche alcanzando una diferencia de media

mag/arcsec² aproximadamente.

7.3. Cruz del Sur, Combarbalá

7.3.1. Fuentes de CL

Las fuentes de CL que se encontraron están listadas en la Tabla 7.11 y también se incluye la distancia a la que se encuentran del Observatorio Cruz del Sur. La Figura 7.19 muestra una proyección azimutal en RGB y por otro lado en la Figura 7.20 se muestran proyecciones cilíndricas en mapas NSB y CCT donde se indican las fuentes de CL identificadas para el sitio de estudio en cuestión.

TABLA 7.11: Fuentes de CL identificadas que afectan el O. Cruz del Sur ordenadas de manera ascendente según su azimut.

Lugar	Distancia (km)	Azimut (°)
Vicuña	133.0	11-16
Minera Los Pelambres	75.0	138-143
Región Metropolitana	253.0	161-179
Salamanca	64.0	173-180
R. de Valparaíso	208	182-198
Illapel	50.7	192-204
Ruta 5	-	204-300
Combarbalá	2.0	325-25
Ovalle	69.6	336-354
Coquimbo - La Serena	143.0	344-353

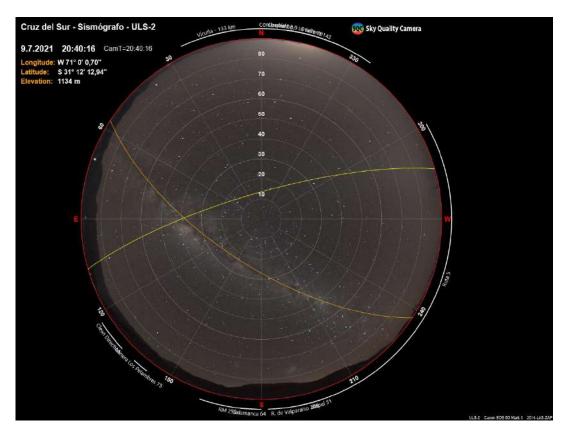


FIGURA 7.19: Proyección azimutal para la imagen IMG003 en RGB. En los bordes de la imagen se indican los valores de azimut al horizonte y los cuatro puntos cardinales. También se indican las fuentes de CL representadas por líneas blancas para su respectivo rango en azimut.

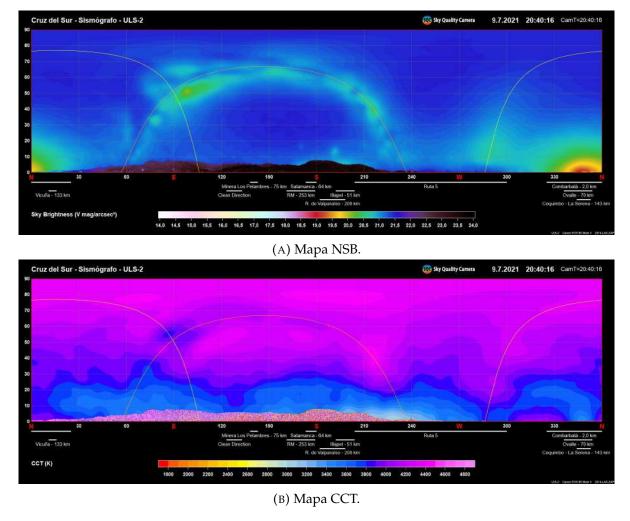


FIGURA 7.20: Proyecciones cilíndricas en (A) NSB y (B) CCT para la imagen IMG005 con las fuentes de CL identificadas.

En la Figura 7.21 se muestran las áreas de interés en la imagen IMG003 del Observatorio Cruz del Sur. La Vía Láctea atraviesa el Área 2 y la Clean Direction para esa imagen en particular. Asimismo en la Tabla 7.12 se muestra el detalle de las áreas de interés elegidas para este sitio de estudio.

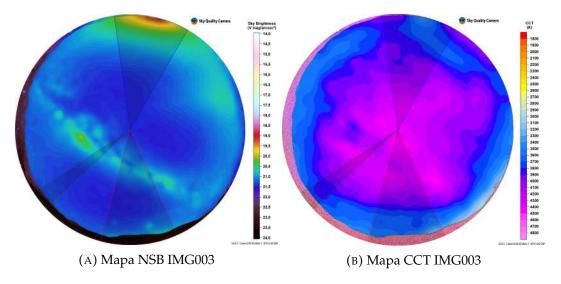


FIGURA 7.21: Se presentan las tres áreas de interés elegidas para Cruz del Sur en la Tabla 7.12, en una proyección azimutal de NSB (a) y de CCT (b). La sección delimitada por el sector circular azul (Área 1) corresponde a dirección en que se ubica Coquimbo - La Serena; Ovalle; Combarbalá, mientras que la región delimitada por el sector circular rojo (Área 2) contiene a las comunas de Illapel y Salamanca, junto a las Regiones Metropolitana y de Valparaíso. El sector circular verde corresponde a la Clean Direction.

TABLA 7.12: Áreas de interes.

Sitio de estudio (Observatorio)	Área	Azimut área	Lugares	Azimut lugar	Distancia (km)
(00301 vatorio)		()		()	(KIII)
			Coquimbo - La Serena	344-253	143.0
	1	330-8	Ovalle	336-354	69.6
			Combarbalá	325-25	2.0
Cruz del Sur			Illapel	189-208	50.7
	2	165-204	Región de Valparaíso	182-198	208.0
	_		Salamanca	173-180	64.0
		Región Metropolitana	161-179	253.0	
	Clean Direction	123-133	-	-	

7.3.2. Perfiles NSB y CCT

7.3.2.1. NSB/CCT vs azimut

En la Figura 7.22 se presenta el anillo azimutal para la imagen IMG003. El anillo se contruyó para una altitud fija de 1°, y no cubre todo el rango en azimut debido a las montañas que hay al horizonte (ver Figura 7.21b). En el anillo azimutal se evidencia un máximo a 346° en azimut, junto a un mínimo en CCT para el mismo valor de azimut.

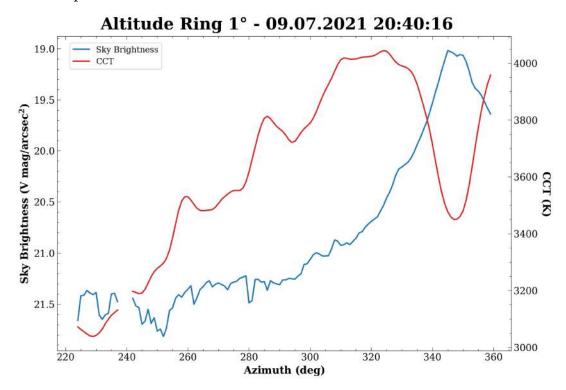


FIGURA 7.22: Anillo azimutal para la imagen IMG003. La línea azul indica el NSB y la línea roja indica el CCT, ambas magnitudes en función del azimut.

7.3.2.2. NSB/CCT vs ángulo cenital

En el gráfico NSB vs ángulo cenital (Figura 7.23a), el aumento exponencial con el ángulo cenital solo se observa para el Área 1 (línea azul, i.e., Coquimbo - La Serena; Ovalle; Combarbalá), teniendo un valor de 19.56 mag/arcsec² en 89°. La tendencia del Área 2 es similar a la Clean Direction hasta 69°, donde el NSB del Área 2 comienza a aumentar alcanzando un valor máximo de 20.94 mag/arcsec². La distribución en CCT para las tres áreas es similar.

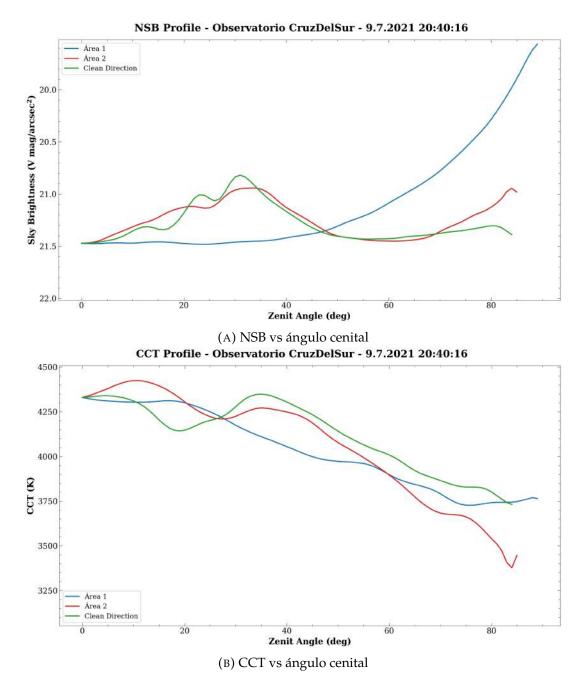


FIGURA 7.23: (a): NSB en la banda V para las 3 áreas de interés indicadas en la Figura 7.21 en función del ángulo cenital en grados. (b): CCT para las mismas áreas. El gráfico fue construido a partir de la imagen IMG003.

Los GIFs de las variaciones temporales en los perfiles de NSB y CCT están disponibles en los siguientes enlaces: perfil NSB; perfil CCT. Entre el comienzo y el final de la noche hay una diferencia de 0.4 mag/arcsec² aproximadamente en el cenit, teniendo un valor de 21.5 mag/arcsec² al inicio y un valor de 21.9 mag/arcsec² al final de la jornada. No se observaron variaciones significativas al horizonte (o a ángulos cenitales mayores a 60°) en NSB para las tres áreas de interés.

7.3.3. Series temporales NSB y CCT

La composición de todas las Info Images para el Observatorio Cruz del Sur está diponible en el link: GIF Info Images. En el GIF se ven fluctuaciones a lo largo de toda la noche, más evidentes en el mapa CCT, a alturas cercanas al horizonte. Cuando la Vía Láctea comienza a descender en altitud (a partir de las 01:00 aproximadamente), el cielo se vuelve más oscuro, disminuyendo su NSB.

Los sectores elegidos para estudiar las variaciones temporales se muestran en la Tabla 7.13. En la Figura 7.24 se observan variaciones en el tiempo tanto en NSB como en CCT para todos los sectores.

TABLA 7.13: Sectores elegidos para estudiar sus variaciones de NSB y CCT en función del tiempo. En todos los casos (excepto en el caso del sector "Zenit Circle") la altura se consideró desde la separación entre el Sky Border y el cielo, añadiendo 20° en altura.

Sector	Azimut (°)
Clean Direction	123-133
Combarbalá; Coquimbo - La Serena	330-8
Illapel - RM	165-204
Minera Los Pelambres; Chacay	138-156
Ruta 5	207-256
Zenit Circle ^a	00-00

^a Círculo de 5° alrededor del Zenit.

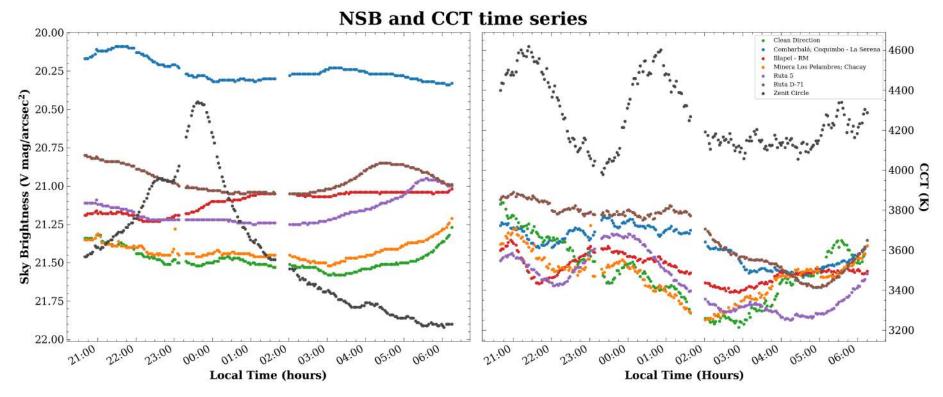


FIGURA 7.24: **Panel izquierdo**: NSB en función de la hora local para los sectores indicados en la Tabla 7.13. **Panel derecho**: CCT en función de la hora local para los mismos sectores. En la leyenda se indica el color para cada sector elegido, y para el caso de Illapel - RM, también esta incluida la comuna de Salamanca y la Región de Valparaíso.

7.3.4. Comparación SQC vs GAMBONS

En la Figura 7.25 se muestra la comparación entre el modelo GAMBONS y la imagen real (IMG003). A simple vista se puede observar la luz zodiacal hacia el oeste en la imagen real.

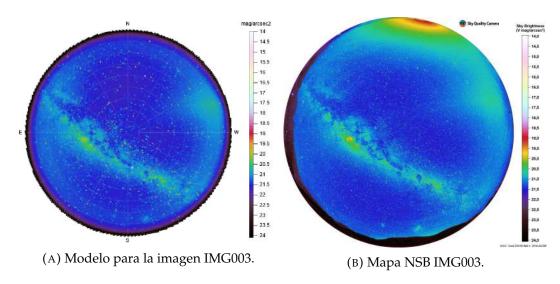


FIGURA 7.25: Comparación entre el modelo GAMBONS (a) y la imagen real IMG003 (b), para el día 09.07.2021 a las 20:40. La barra de color indica el NSB en unidades de mag/arcsec² y en los bordes de la imagen del modelo se indican los cuatro puntos cardinales.

La comparación de NSB entre el modelo y las imágenes IMG003 e IMG280 se muestran en la Tabla 7.14. Para esta última imagen, la diferencia en los valores de NSB coincide con el error instrumental de la cámara SQC, que tiene un valor de 0.01 mag/arcsec².

TABLA 7.14: Valores del NSB para los datos reales y para el modelo GAMBONS, considerando el NSB dentro de un círculo de 5° alrededor del zenit.

Imagen	NSB_{SQC} (mag/arcsec ²)	NSB _{GAMBONS} (mag/arcsec ²)	ΔNSB
IMG003	21.48	21.41	0.07
IMG280	21.83	21.84	0.01

En la Tabla 7.15 se presenta el promedio del punto más oscuro y el promedio del círculo de 5° alrededor del zenit.

TABLA 7.15: Valores de NSB y CCT promediados a lo largo de toda la noche para (i) el zenit alrededor de un círculo cenital de 5° y para el punto más oscuro del cielo. El error corresponde a la desviación estándar en el set de imágenes

	Zenit	Punto más oscuro
NSB_{prom} (mag/arcsec ²)	21.42 ± 0.41	21.85 ± 0.16
CCT _{prom} (K)	$\textbf{4,268} \pm \textbf{171}$	-

7.3.5. Análisis

NSB/CCT vs azimut. El máximo que se tiene a 346° en azimut corresponde a la contribución de Combarbalá, Ovalle y Coquimbo. Ya que estas tres zonas se encuentran en la misma línea de visión, no es posible estimar la contribución al NSB/CCT de cada una por separado.

En CCT, (línea roja, Figura 7.3.2.1) se observan valores de hasta 4,042 K entre 300° y 335° en azimut, considerablemente mayores a los observados en cualquier otro sitio de estudio. También hay valores cercanos (3,955 K) entre 359° y 11°. El origen de esta contribución no podría estar asociada a fuentes naturales ya que en primer lugar parece provenir del horizonte, y en segundo lugar la Vía Láctea a esa hora atraviesa desde 60° hasta 230° en azimut aproximadamente y la luz zodiacal se encuentra a 289° en azimut aproximadamente. Una posible explicación sería la presencia de iluminación tipo LED con tonalidades blanco neutro, que se ajustarían a los valores de CCT vistos en los rangos de azimut antes mencionados.

NSB/CCT vs ángulo cenital. Se observa tanto en la Figura 7.23 como en los GIFs (perfil NSB; perfil CCT) que el Área 1 tiene una contribución en NSB considerablemente mayor a las otras dos áreas, ya que hay que considerar que en el Área 1 se encuentra la ciudad de Combarbalá a 2 km (13,322 habitantes), y el Área 2 para este sitio contiene comunas que están ubicadas a más de 50 km de distancia, cuya población es relativamente baja (30,848 habitantes en Illapel y 29,347 habitantes para el caso de Salamanca), y las Regiones

de Valparaíso y Metropolitana a más de 340 km. En las proyecciones azimutales CCT no se observan grandes impactos en el cielo por parte del Área 1, comparado a los impactos que genera el Área 1 del O. Collowara. Las temperaturas para el Área 1 en el O. Cruz del Sur son mayores a 3,500 K al zenit, lo cual indicaría uso de distintas tecnologías de iluminación en las ciudades que contienen las Áreas 1 de Collowara y Cruz del Sur, teniendo en cuenta que ambas Áreas 1 contienen a la ciudad de Coquimbo - La Serena, pero que además se superponen con las ciudades de Andacollo y Combarbalá.

Series temporales NSB y CCT. En el GIF Info Images se observa una zona mayormente contaminada al horizonte en mapa NSB en la dirección norte, la cual tiene un NSB mayor al principio de la noche. En el mapa CCT se observan fluctuaciones en el tiempo, probablemente debido a la presencia de nubes durante la jornada (véase el estado meteorológico en la Sección 6.1.2).

Como se identificó en el apartado NSB/CCT vs azimut, se tienen dos sectores al horizonte con valores CCT similares a los que tendrían fuentes naturales. En el mapa CCT del GIF esto se ve reflejado como "manchas" con tonalidades color violeta que varían en el transcurso de la noche, que tendrían un origen artificial, como se mencionó anteriormente. Al inicio de la noche, esta contribucion artificial, al encontrarse cerca del oeste podría ser erróneamente confundida con la luz zodiacal.

En la Figura 7.24 se ve que los sectores denominados "Ruta 5" y Ruta "D-71", en cuyos rangos de azimut se encuentran las rutas automovilísticas conocidas por los mismos nombres, también tienen una contribución al NSB y experimentan variaciones a lo largo de la noche, aunque su contribución es mucho menor que el sector "Combarbalá; Coquimbo - La Serena", el cual es considerablemente mayor con respecto a todos los sectores elegidos para este sitio. Se observan más variaciones en los valores de CCT, lo cual estaría correlacionado a las variaciones en el estado meteorológico de esa noche, en particular, al paso de distintos frentes de nubes vistos en las imágenes de Zoom Earth.

Comparación con modelo GAMBONS. Se pueden diferenciar en la Figura 7.25b el aporte de las fuentes naturales y artificiales. En el caso de la luz zodiacal se observa cómo el NSB se mezcla con la contribución artificial proveniente de la dirección en que se encuentra Combarbalá. Por la parte sur, a pesar de haber contribuciones artificiales, aún son distinguibles las Nubes de Magallanes.

El efecto de las contribuciones artificiales no genera grandes impactos en el cielo del O. Cruz del Sur considerando que las diferencias en NSB cenital son inferiores a 0.1 mag/arcsec², a diferencia de sitios como Collowara o Valle del Sol, donde las diferencia en NSB superan la décima de mag/arcsec².

7.4. Cancana, Cochiguaz

7.4.1. Fuentes de CL

Las fuentes de CL identificadas que afectan al cielo nocturno del Observatorio Cancana están listadas en la Tabla 7.16. Luego las fuentes de CL se muestran en una proyección azimutal en RGB (Figura 7.26 y por otro lado en la Figura 7.27 se muestran proyecciones cilíndricas en mapas NSB y CCT.

TABLA 7.16: Fuentes de CL identificadas que afectan el O. Cancana ordenadas de manera ascendente según su azimut.

Lugar	Distancia (km)	Azimut (°)
Región Metropolitana	369.0	181-188
R. de Valparaíso	338.0	192-201
Ovalle	90.2	234-238
Andacollo	66.0	257-263
Coquimbo - La Serena	86.0	278-292
Vicuña	32.0	289-297

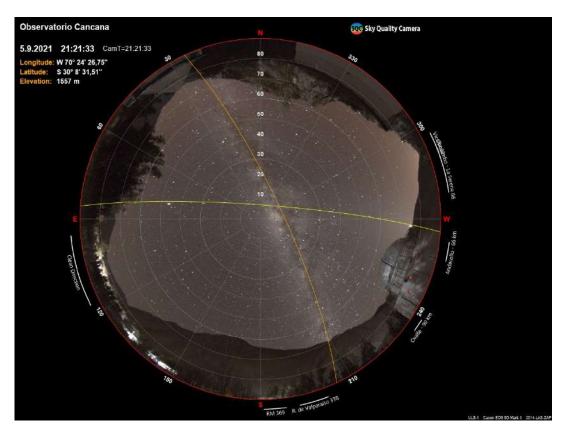


FIGURA 7.26: Proyección azimutal para la imagen IMG001 en RGB. En los bordes de la imagen se indican los valores de azimut al horizonte y los cuatro puntos cardinales. También se indican las fuentes de CL representadas por líneas blancas para su respectivo rango en azimut.

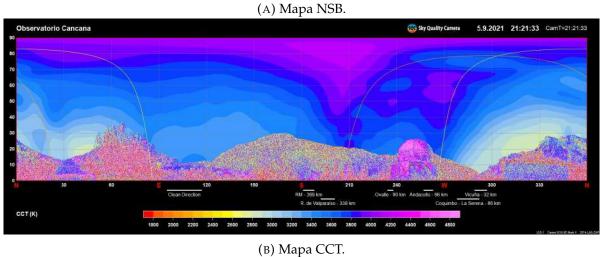


FIGURA 7.27: Proyecciones cilíndricas en (A) NSB y (B) CCT para la imagen IMG005 con las fuentes de CL identificadas.

La Figura 7.28 indica las tres áreas de interés en una proyección azimutal NSB y CCT para la imagen IMG001. De la misma manera en la Tabla 7.17 se muestran las áreas elegidas junto a las fuentes de CL que contienen.

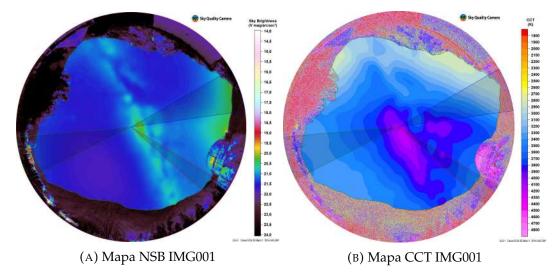


FIGURA 7.28: Se presentan las tres áreas de interés elegidas para Cancana, en una proyección azimutal de NSB (a) y de CCT (b). La sección delimitada por el sector circular azul (Área 1) corresponde a dirección en que se ubica Coquimbo - La Serena; Vicuña, mientras que la región delimitada por el sector circular rojo (Área 2) contiene a la ciudad de Ovalle y el sector circular verde corresponde a la Clean Direction.

TABLA 7.17: Áreas de interes.

Sitio de estudio	Área	Azimut área	Lugares	Azimut lugar	Distancia
(Observatorio)		(°)		(°)	(km)
Cancana	1	278-300	Vicuña Coquimbo - La Serena	288-300 277-292	32.0 86.0
Curicula	2	228-239	Ovalle	228-239	91.0
	Clean Direction	95-117	-	-	-

7.4.2. Perfiles NSB y CCT

7.4.2.1. NSB/CCT vs azimut

Para este sitio de estudio no se obtuvo la distribución de NSB/CCT en función del azimut debido a la poca visibilidad al horizonte por la presencia de montañas, árboles y edificios (ver Figura 7.28b) hasta alturas considerablemente altas (sobre los 30°).

7.4.2.2. NSB/CCT vs ángulo cenital

A 74° en ángulo cenital, hay una diferencia de 0.3 mag/arcsec² entre el Área 1 y el Área 2, y la misma diferencia entre el Área 2 y la Clean Direction (Figura 7.29a). En cuanto a CCT la tendencia de las áreas es similar (Figura 7.29b).

Los GIFs de las variaciones temporales en los perfiles de NSB y CCT están disponibles en los siguientes enlaces: perfil NSB; perfil CCT. Luego de la medianoche, la contribución del Área 1 pasa de 20.47 mag/arcsec² a las 01:00, a 19.32 mag/arcsec² a las 02:00, alcanzando un valor de 19.18 mag/arcsec² a las 03:00, lo anterior a un valor de azimut de 85°. Para esta última hora, el Área 1 tiene un CCT de 2,400 K a 85° en azimut aproximadamente, mientras que las otras dos áreas tienen valores de CCT sobre los 3,500 K.

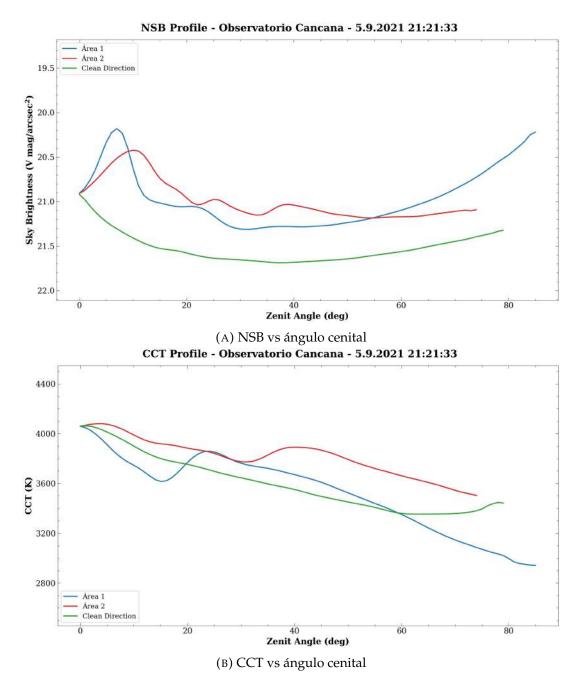


FIGURA 7.29: (a) Gráfico NSB en la banda V y (b) gráfico CCT. Ambas magnitudes en función del ángulo cenital construidos a partir de la imagen IMG001.

7.4.3. Series temporales NSB y CCT

La composición de todas las Info Images de este sitio de estudio se encuentra en el enlace: GIF Info Images. En el panel izquierdo se observa como la fuente de luz artificial bajo el Sky Border en la dirección este desaparece a partir de las 22:40. En la dirección sureste también se tienen fuentes de luz bajo el Sky Border que desaparecen alrededor de las 02:00. En las direcciones sur y suroeste también se tienen fuentes artificiales que presentan fluctuaciones en NSB a lo largo de la noche.

Los sectores elegidos para estudiar sus variaciones temporales se muestran en la Tabla 7.18.

TABLA 7.18: Sectores elegidos para estudiar sus variaciones de NSB y CCT en función del tiempo. En todos los casos (excepto en el caso del sector "Zenit Circle") la altura se consideró desde la separación entre el Sky Border y el cielo, añadiendo 20° en altura.

Sector	Azimut (°)
Andacollo	256-263
Clean Direction	95-117
Coquimbo - La Serena; Vicuña	278-300
Ovalle	228-239
R. de Valparaíso	192-201
Zenit Circle ^a	00-00

^a Círculo de 5° alrededor del Zenit.

En la Figura 7.30 se ven fluctuaciones tanto en NSB como en CCT para todos los sectores elegidos.

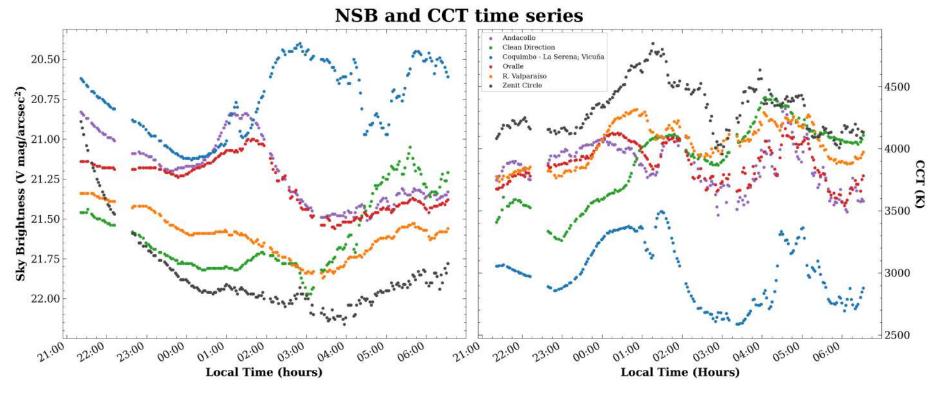


FIGURA 7.30: **Panel izquierdo**: NSB en función de la hora local para los sectores indicados en la Tabla 7.18. **Panel derecho**: CCT en función de la hora local para los mismos sectores. En la leyenda se indica el color para cada sector elegido.

7.4.4. Comparación SQC vs GAMBONS

A pesar de la presencia de montañas en el Observatorio Cancana, es posible ver la contribución de la luz zodiacal en la Figura 7.31b, así como también la mayor parte de la Vía Láctea.

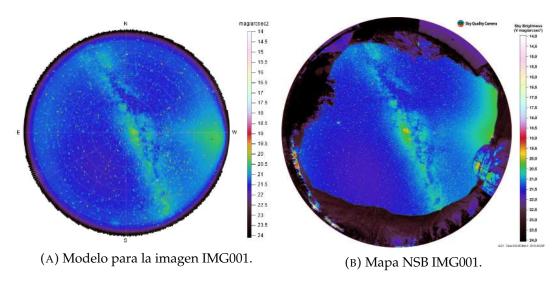


FIGURA 7.31: Comparación entre el modelo GAMBONS (a) y la imagen real IMG001 (b), para el día 05.09.2021 a las 21:21. La barra de color indica el NSB en unidades de mag/arcsec² y en los bordes de la imagen del modelo se indican los cuatro puntos cardinales.

La comparación entre el círculo cenital de 5° entre el modelo y las imágenes IMG001 e IMG260 se muestran en la Tabla 7.19.

TABLA 7.19: Valores del NSB para los datos reales y para el modelo GAMBONS, considerando el NSB dentro de un círculo de 5° alrededor del zenit.

Imagen	NSB_{SQC} (mag/arcsec ²)	$NSB_{GAMBONS}$ (mag/arcsec ²)	ΔNSB
IMG001	20.85	20.89	0.04
IMG260	21.81	21.86	0.05

En la Tabla 7.20 se presenta el promedio del punto más oscuro y el promedio del círculo de 5° alrededor del zenit. En este sitio se encontró el mayor valor para el zenit y para el punto más oscuro (ambos promediados).

TABLA 7.20: Valores de NSB y CCT promediados a lo largo de toda la noche para (i) el zenit alrededor de un círculo cenital de 5° y para el punto más oscuro del cielo. El error corresponde a la desviación estándar en el set de imágenes

	Zenit	Punto más oscuro
NSB_{prom} (mag/arcsec ²)	21.86 ± 0.24	22.41 ± 0.23
CCT _{prom} (K)	$\textbf{4,332} \pm \textbf{206}$	-

7.4.5. Análisis

NSB/CCT vs ángulo cenital. Entre 0° y 20° en azimut, se observa el efecto que tiene la Vía Láctea en el NSB (ver Figura 7.29a) en las Áreas 1 y 2, en contraste a la Clean Direction, donde no está presente. En particular, a 7° en ángulo cenital se observa un máximo en NSB para el Área 1, y existe una diferencia de NSB de 1.12 mag/arcsec² con respecto al Área Clean Direction.

En la localidad de Cochiguaz no hay alumbrado público, sin embargo se pueden identificar contribuciones artificiales bajo las montañas en las proyecciones azimutales de los GIF de NSB (perfil NSB; perfil CCT). A medida que pasa la noche el cielo se oscurece, llegando a valores bajo las 22 mag/arcsec² a las 04:02 en el zenit (ver GIF NSB). En cambio, el Área 1 (dirección en la que se encuentra Vicuña y Coquimbo - La Serena) alcanza su máximo en NSB y su mínimo en CCT a las 03:00 a 85° en ángulo cenital, probablemente debido al efecto amplificador de las nubes en esa noche.

Series temporales NSB y CCT. Se puede ver en los mapas de NSB que las luces artificiales bajo el horizonte en la dirección sureste se apagan paulatinamente (GIF Info Images), por lo que estas luces podrían estar asociadas a recintos privados. En el mapa CCT se observan valores más bajos al principio de la noche prácticamente en todas las direcciones al horizonte, con respecto a los valores que zenit. Luego de la medianoche aumentan los valores de CCT en gran parte del cielo, y se tienen pocas luces bajo las montañas, por lo que los valores de CCT más bajos vistos al inicio de la noche estarían asociados a fuentes artificiales locales.

149

En todos los sectores seleccionados para este sitio (ver Figura 7.30), se observan variaciones considerables en NSB como en CCT, que se atribuyen al estado de las nubes durante esa noche (ver datos meteorológicos presentados en la Tabla 6.3). En particular, en las imágenes de Zoom Earth, a 20 km de Ovalle al norte se observa una nube, y luego de las 02:00 las nubes cubren toda la zona, incluyendo la ciudad de Coquimbo - La Serena, Ovalle y Vicuña, hasta el fin de la jornada. En el sector "Coquimbo - La Serena; Vicuña" se ve como el NSB aumenta y el CCT disminuye entre las 01:30 y las 03:00, en cambio se observa el efecto contrario en sectores como "Andacollo" y "Ovalle" donde se hay una disminución de NSB y una disminución en CCT, aunque la disminución en CCT es menor que para el sector "Coquimbo - La Serena; Vicuña".

Comparación con modelo GAMBONS. Las diferencias entre el NSB cenital entre los valores del modelo y los valores reales son menores a 0.05 mag/arcsec². A pesar de que el modelo GAMBONS está construido para un escenario sin luna y sin nubes, se tiene una buena concordancia con la imagen IMG260 (tomada a las 06:29), considerando que a esa hora el cielo estaba cubierto por nubes según las imágenes vistas a través de Zoom Earth.

7.5. Mamalluca, Vicuña

7.5.1. Fuentes de CL

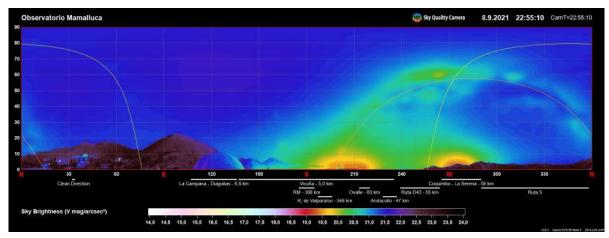

Las fuentes de CL que se encontraron están listadas en la Tabla 7.21 y también se incluye la distancia a la que se encuentran del Observatorio Mamalluca. La Figura 7.32 muestra una proyección azimutal en RGB y por otro lado en la Figura 7.33 se muestran proyecciones cilíndricas en mapas NSB y CCT donde se indican las fuentes de CL identificadas para el sitio de estudio en cuestión.

TABLA 7.21: Fuentes de CL identificadas que afectan el O. Mamalluca ordenadas de manera ascendente según su azimut.

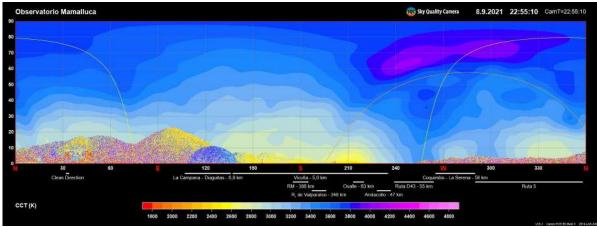

Lugar	Distancia (km)	Azimut (°)
La Campana - Diaguitas	6.8	107-136
Vicuña	5.0	137-235
Región Metropolitana	388.0	175-185
R. de Valparaíso	348.0	187-196
Ovalle	83.0	213-220
Andacollo	47.0	228-237
Ruta D43	55.0	239-264
Coquimbo - La Serena	56.4	265-290
Ruta 5	-	290-358

FIGURA 7.32: Proyección azimutal para la imagen IMG005 en RGB. En los bordes de la imagen se indican los valores de azimut al horizonte y los cuatro puntos cardinales. También se indican las fuentes de CL representadas por líneas blancas para su respectivo rango en azimut.

(A) Mapa NSB.

(B) Mapa CCT.

FIGURA 7.33: Proyecciones cilíndricas en (A) NSB y (B) CCT para la imagen IMG005 con las fuentes de CL identificadas.

En la Figura 7.34 se observa que el Área Clean Direction tiene una extensión de sólo dos grados en azimut, ya que esta era la única extensión virtualmente libre de CL que se encontró en el Light Pollution Map. Por otro lado vale la pena recordar que la Tabla 7.22 muestra las áreas de interés elegidas para el O. Mamalluca, su delimitación en azimut en la columna "Azimut área", junto a las delimitaciones en azimut de las fuentes de CL que contienen dichas áreas en la columna "Azimut lugar"; en este caso el nombre de los lugares que contienen las áreas elegidas corresponden al nombre de la comuna o región. Por último, en la columna "Distancia" se tiene la distancia en kilómetros a la que se encuentra cada fuente de CL del sitio de estudio.

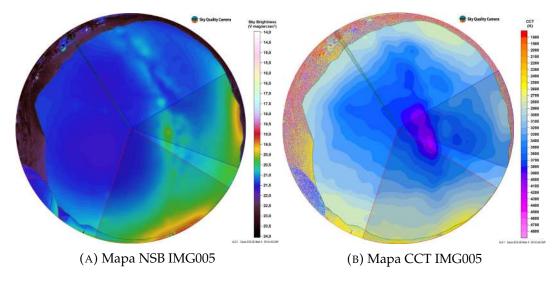


FIGURA 7.34: Se presentan las tres áreas de interés elegidas para Mamalluca, en una proyección azimutal de NSB (a) y de CCT (b). La sección delimitada por el sector circular azul (Área 1) corresponde a dirección en que se ubica Coquimbo - La Serena; en el sector circular rojo (Área 2) se tienen las regiones Metropolitana y de Valparaíso, junto a Andacollo y Vicuña. El sector circular verde corresponde a la Clean Direction.

TABLA 7.22: Áreas de interes.

Sitio de estudio (Observatorio)	Área	Azimut área	Lugares	Azimut lugar	Distancia (km)
Mamalluca	1	250-300	Coquimbo - La Serena	265-290	56.4
	2	162-239	Andacollo	228-237	47.0
			Ovalle	213-220	83.5
			Región de Valparaíso	187-196	348.0
			Región Metropolitana	175-185	388.0
			Vicuña	137-235	5.0
	Clean Direction	32-34	-	-	-

7.5.2. Perfiles NSB y CCT

7.5.2.1. NSB/CCT vs azimut

En el Observatorio Mamalluca se hizo un perfil NSB/CCT en función del azimut para una altura fija de 5°. Se eligió esta altura debido a la geografía del lugar (ver Figura 7.34), por lo que el rango en azimut fue de 150°-360°. En la Figura 7.35 se presenta el anillo azimutal para la imagen IMG005. Se pueden observar dos máximos en NSB, uno a 200° y otr máximo con un doble peak a 275° en azimut. En CCT se tienen mínimos para estos mismos valores.

Se encontró una diferencia de 348 K en los mínimos en CCT para Vicuña y Coquimbo - La Serena. Para Vicuña el mínimo valor en CCT es 2,655 K, mientras que para el caso de Coquimbo - La Serena el valor mínimo de CCT es de 3,003 K. En CCT solo se tiene un mínimo en Coquimbo - La Serena, a diferencia del NSB, donde es posible identificar las contribuciones de Coquimbo y La Serena por separado.

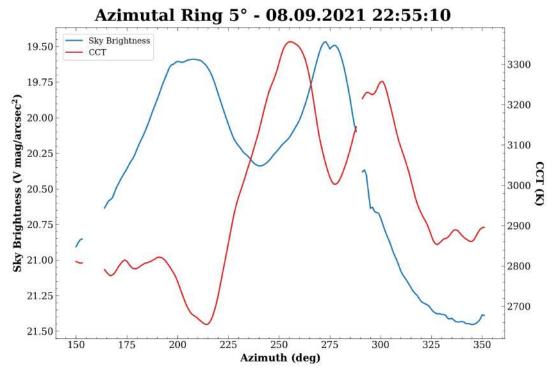


FIGURA 7.35: Anillo azimutal para la imagen IMG005. La línea azul indica el NSB y la línea roja indica el CCT, ambas magnitudes en función del azimut.

7.5.2.2. NSB/CCT vs ángulo cenital

La tendencia de las Áreas 1 y 2 a ángulos cenitales mayores a 50° es similar en los perfiles NSB (Figura 7.36a), mientras que la tendencia de las dos áreas en CCT también es similar, el CCT del Área 2 es más bajo que el del Área 1; el Área 2 alcanza un valor mínimo de 2,782 K y el Área 1 alcanza un mínimo de 3,192 K a 87° y 85° en azimut respectivamente (Figura 7.36b).

Los GIFs de las variaciones temporales en los perfiles de NSB y CCT están disponibles en los siguientes enlaces: perfil NSB; perfil CCT. La tendencia en NSB de las Áreas 1 y 2 no cambia mucho a lo largo de la noche, mientras que el Área Clean Direction aumenta en NSB hacia el final de la jornada de observación. En los perfiles CCT, se observaron variaciones a lo largo de la noche en las tres áreas, y en concreto los valores al zenit fluctúan entre 3,600 K y 4,050 K. Además, el cielo adquiere valores más altos hacia el final de la noche en la dirección noreste, a la vez que en las Áreas 1 y 2 se encontraron irregularidades sobre el horizonte (85° en ángulo cenital).

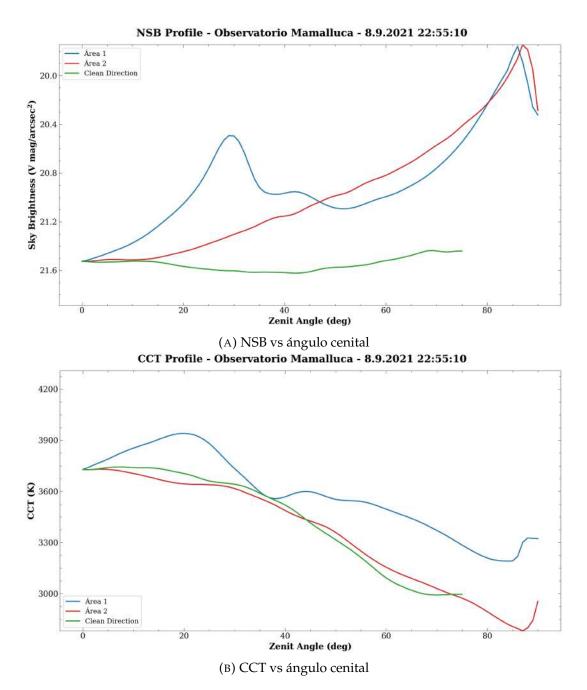


FIGURA 7.36: (a) Gráfico NSB en la banda V y (b) gráfico CCT. Ambas magnitudes en función del ángulo cenital construidos a partir de la imagen IMG005.

7.5.3. Series temporales NSB y CCT

El recurso visual con todas las Info Images para el Observatorio Mamalluca está diponible en: GIF Info Images. Se observan fluctuaciones en los mapas CCT a lo largo de la noche, en particular, al inicio de la noche se tienen temperaturas bajas prácticamente en todo el horizonte, y a medida que pasa la noche las temperaturas aumentan en la zona entre 120° a 300° en azimut. En los mapas NSB no se perciben fluctuaciones hasta las 04:30, donde se observan patrones irregulares al horizonte en las direcciones de las Áreas 1 y 2.

Los sectores elegidos para estudiar las variaciones temporales se muestran en la Tabla 7.23.

TABLA 7.23: Sectores elegidos para estudiar sus variaciones de NSB y CCT en función del tiempo. En todos los casos (excepto en el caso del sector "Zenit Circle") la altura se consideró desde la separación entre el Sky Border y el cielo, añadiendo 20° en altura.

Sector	Azimut (°)
Clean Direction	32-34
Coquimbo - La Serena	250-300
Ruta 5	303-4
Vicuña; Andacollo; Ovalle; R. de Valparaíso; RM	162-239
Zenit Circle ^a	00-00

^a Círculo de 5° alrededor del Zenit.

En la Figura 7.37 sólo se tienen variaciones notorias de NSB en el sector Clean Direction, que a partir de las 03:00 comienza a aumentar en NSB, así como también en CCT. En los sectores Zenit Circle y Ruta 5 también se evidencian variaciones en CCT a lo largo de noche, y en el sector Coquimbo - La Serena el CCT comienza a disminuir a partir de las 04:30.

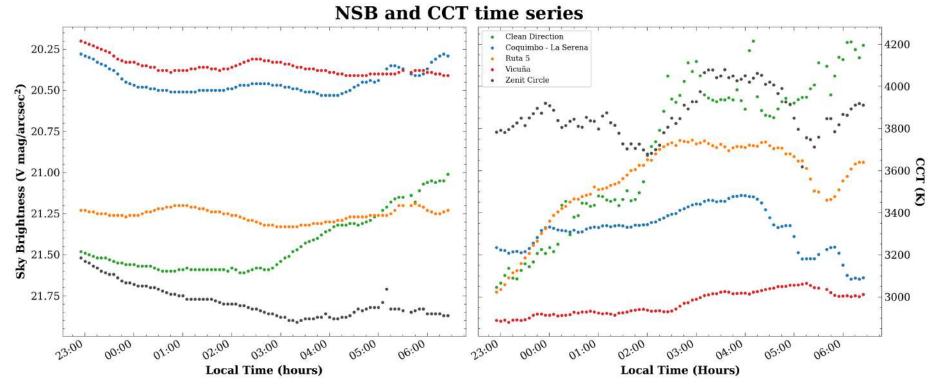


FIGURA 7.37: **Panel izquierdo**: NSB en función de la hora local para los sectores indicados en la Tabla 7.23. **Panel derecho**: CCT en función de la hora local para los mismos sectores. En la leyenda se indica el color para cada sector elegido.

7.5.4. Comparación SQC vs GAMBONS

En la Figura 7.38 se muestra la comparación entre el modelo GAMBONS y la imagen real (IMG005). En la imagen real no es posible percibir la contribución de la luz zodiacal, y tampoco se percibe la Vía Láctea en la dirección Sur.

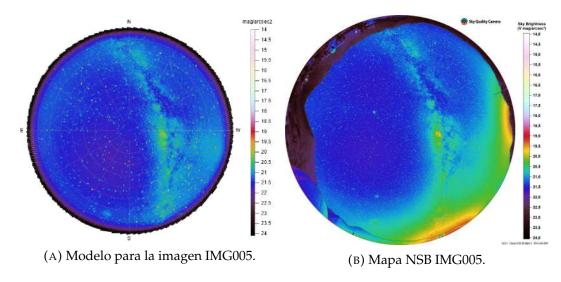


FIGURA 7.38: Comparación entre el modelo GAMBONS (a) y la imagen real IMG005 (b), para el día 08.09.2021 a las 22:55. La barra de color indica el NSB en unidades de mag/arcsec² y en los bordes de la imagen del modelo se indican los cuatro puntos cardinales.

Los valores de NSB de comparación al zenit se muestran en la Tabla 7.24.

TABLA 7.24: Valores del NSB para los datos reales y para el modelo GAMBONS, considerando el NSB dentro de un círculo de 5° alrededor del zenit.

Imagen	NSB_{SQC} (mag/arcsec ²)	$NSB_{GAMBONS}$ (mag/arcsec ²)	ΔNSB
IMG005	21.48	21.54	0.06
IMG055	21.83	21.77	0.05

En la Tabla 7.25 se presenta el promedio del punto más oscuro y el promedio del círculo de 5° alrededor del zenit.

TABLA 7.25: Valores de NSB y CCT promediados a lo largo de toda la noche para (i) el zenit alrededor de un círculo cenital de 5° y para el punto más oscuro del cielo. El error corresponde a la desviación estándar en el set de imágenes

	Zenit	Punto más oscuro
NSB_{prom} (mag/arcsec ²)	21.79 ± 0.10	21.86 ± 0.06
CCT _{prom} (K)	$3,869 \pm 112$	-

7.5.5. Análisis

NSB/CCT vs azimut. En el anillo azimutal del O. Mamalluca el primer máximo en NSB que va de 196° a 213° en azimut (véase Figura 7.35, línea azul), corresponde a la parte central de la ciudad de Vicuña, mientras que el doble peak se ajusta a dirección en que se encuentra la ciudad de Coquimbo a 273° en azimut y a la ciudad de La Serena en 278°. Las diferencias en CCT vistas en Vicuña y Coquimbo - La Serena evidencian el uso de distintos tipos de tecnologías de iluminación.

NSB/CCT vs ángulo cenital. En el perfil NSB (ver Figura 7.36) del Área 2 se puede ver un máximo en NSB a 29° en ángulo cenital, que se atribuye a la presencia de la Vía Láctea dentro del Área 2 (ver Figura 7.34a), ya que para este valor en ángulo cenital hay un aumento en CCT, asociado a la contribución de fuentes naturales. El Área 1, que contiene a las ciudades de Coquimbo - La Serena a 56 km del sitio, tiene una contribución en NSB prácticamente igual al Área 2 a lo largo de toda la noche (perfil NSB; perfil CCT), a pesar de que ésta contiene varios lugares: la ciudad de Vicuña a 5 km, la ciudad de Ovalle a 83 km y las Regiones de Valparaíso y Metropolitana, ambas a más de 340 km.

Los cambios vistos en los perfiles CCT se atribuyen al efecto de las nubes que aparecen al final de la jornada (ver datos meteorológidos de la Tabla 6.3), y de la misma manera en NSB a las 06:05 se ve el efecto amplificador, que aparece como una "mancha" roja sobre el horizonte en el mapa NSB y a su vez genera un máximo en NSB a 82° en ángulo cenital.

Series temporales NSB y CCT. Las irregularidades en CCT vistas al inicio de la noche podrían estar asociadas a la presencia de luces locales cercanas al Observatorio, como las que se ven en el GIF Info Images bajos las montañas entre 10° y 60° en azimut. Además, en el mapa de NSB no se aprecian "manchas" en el cielo provenientes del horizonte en la dirección entre 10° y 60° en azimut como las que se ven en las direcciones suroeste y oeste, características de contribuciones al NSB proveniente de ciudades.

A partir de las 04:00 es posible ver el efecto amplificador en NSB de las nubes en el sector "Coquimbo - La Serena" en el panel izquierdo de la Figura 7.37 las cuales se pueden ver el mapa de NSB del GIF de Info Images en el rango de azimut de 250° a 300°. Asimismo, hay una disminución en los valores de CCT para el mismo sector. Por otra parte, en el sector "Vicuña" el efecto de las nubes en NSB y en CCT no es tan notorio como en el caso del sector "Coquimbo - La Serena".

Comparación con modelo GAMBONS. A pesar de que en la Figura 7.38 se pierde parcialmente la visibilidad de fuentes naturales debido a la CL al horizonte, la diferencia entre los valores de NSB cenitales alcanza las 0.6 mag/arcsec², valores similares a los que se tienen en el O. Cancana. A pesar de la similitud entre los resultados, en el NSB del O. Mamalluca se pueden ver más fuentes de origen artificial al horizonte, y además los valores de CCT se corresponden más con los de un cielo contaminado como en el O. Collowara que a un cielo más natural como en el O. Cancana, ya que los impactos de las fuentes artificiales que afectan el O. Mamalluca se observan hasta alturas cercanas al zenit (Ver GIF Info-Images).

7.6. Valle del Sol, Monte Patria

7.6.1. Fuentes de CL

Las fuentes de CL identificadas que afectan al cielo nocturno del Observatorio Valle del Sol están listadas en la Tabla 7.26. A continuación se indican los rangos en azimut para las fuentes de CL y la Clean Direction en distintos tipos de imágenes. En la Figura 7.39 se muestra una proyección azimutal en RGB y por otro lado en la Figura 7.40 se muestran proyecciones cilíndricas en mapas NSB y CCT.

TABLA 7.26: Fuentes de CL identificadas que afectan el O. Valle del Sol ordenadas de manera ascendente según su azimut.

Lugar	Distancia (km)	Azimut (°)
Carén	0.3	27-276
Región Metropolitana	292.0	172-185
R. de Valparaíso	252.0	188-200
Ovalle	49.0	295-313
Coquimbo - La Serena	60.0	328-344
Andacollo	73.5	334-338

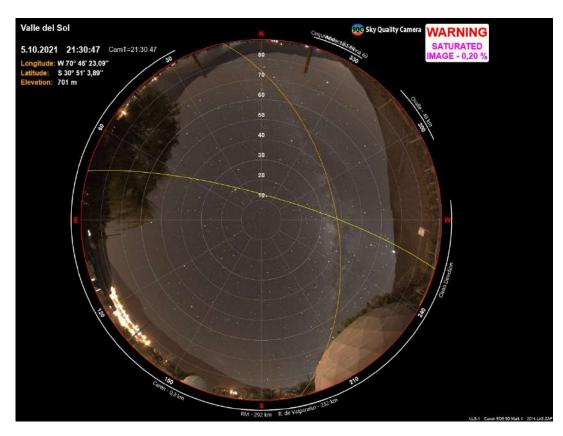


FIGURA 7.39: Proyección azimutal para la imagen IMG008 en RGB. En los bordes de la imagen se indican los valores de azimut al horizonte y los cuatro puntos cardinales. También se indican las fuentes de CL representadas por líneas blancas para su respectivo rango en azimut.

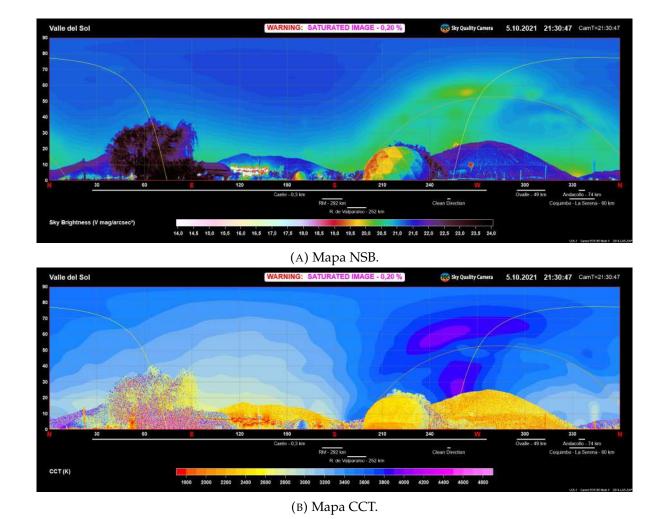


FIGURA 7.40: Proyecciones cilíndricas en (A) NSB y (B) CCT para la imagen IMG005 con las fuentes de CL identificadas.

La Figura 7.41 indica las tres áreas de interés en una proyección azimutal NSB y CCT para la imagen IMG008. De la misma manera en la Tabla 7.27 se muestran las áreas elegidas junto a las fuentes de CL que contienen.

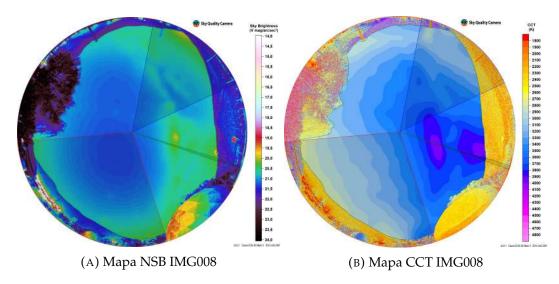


FIGURA 7.41: Se presentan las tres áreas de interés elegidas para Valle del Sol, en una proyección azimutal de NSB (a) y de CCT (b). La sección delimitada por el sector circular azul (Área 1) corresponde a dirección en que se ubica Coquimbo - La Serena, Andacollo y Ovalle; en el sector circular rojo (Área 2) se tiene Carén, junto a las regiones Metropolitana y de Valparaíso. El sector circular verde corresponde a la Clean Direction.

TABLA 7.27: Áreas de interes.

Sitio de estudio (Observatorio)	Área	Azimut área	Lugares	Azimut lugar	Distancia (km)
			Andacollo	334-338	73.5
	1	295-349	Coquimbo - La Serena	328-344	112.0
			Ovalle	295-313	49.0
Valle del Sol			Región de Valparaíso Salamanca	188-200 187-192	252.0 105.0
	2	95-198	Región Metropolitana	172-185	292.0
			Carén	27-276	0.3
	Clean Direction	251-253	-	-	-

7.6.2. Perfiles NSB y CCT

7.6.2.1. NSB/CCT vs azimut

Para el complejo turístico Valle del Sol tampoco se construyó un anillo azimutal debido a que las montañas alcanzan los 20° de altitud en el lugar, y en particular en el punto de observación también había un árbol que llegaba a una altitud de 35° (Ver Figura 7.41).

7.6.2.2. NSB/CCT vs ángulo cenital

En la Figura 7.42 se muestran los perfiles de NSB y CCT en función del ángulo cenital para las áreas de interés elegidas para Valle del Sol en la Tabla 7.27.

En la Figura 7.42a se ve que hasta 70° en ángulo cenital, el Área Clean Direction tiene un NSB mayor que las Áreas 1 y 2, y para este valor la diferencia en NSB entre la Clean Direction y el Área 1 es de 0.37 mag/arcsec². Cuando el ángulo cenital es mayor a 84° el NSB del Área 1 es mayor, llegando a un valor de 19.94 mag/arcsec² al horizonte.

La composición de los perfiles de NSB y CCT están disponibles en los siguientes enlaces: perfil NSB; perfil CCT. Se observa una disminución en NSB para las tres áreas de interés a medida que pasa el tiempo, así como también un aumento de los valores CCT durante el transcurso de la jornada.

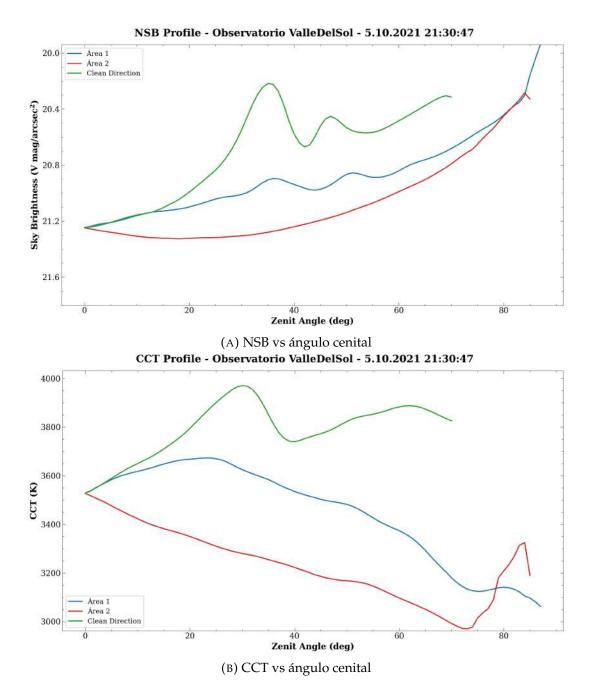


FIGURA 7.42: (a) Gráfico NSB en la banda V y (b) gráfico CCT. Ambas magnitudes en función del ángulo cenital construidos a partir de la imagen IMG008.

7.6.3. Series temporales NSB y CCT

La composición de todas las Info Images para el Observatorio Valle del Sol está diponible en: GIF Info Images. Bajo el horizonte entre 27° y 276° en azimut, los valores de NSB alcanzan las 16.6 mag/arcsec². A lo largo de la noche también se ve cómo el domo que se encuentra a 220° en azimut disminuye el NSB que refleja a lo largo de la noche. El CCT es más bajo al comienzo de la noche y aumenta con el paso del tiempo.

Los sectores elegidos para estudiar sus variaciones temporales se muestran en la Tabla 7.28.

TABLA 7.28: Sectores elegidos para estudiar sus variaciones de NSB y CCT en función del tiempo. En todos los casos (excepto en el caso del sector "Zenit Circle") la altura se consideró desde la separación entre el Sky Border y el cielo, añadiendo 20° en altura.

Sector	Azimut (°)
Carén	95-198
Clean Direction	251-253
Coquimbo - La Serena; Ovalle	295-349
Vicuña	2-11
Zenit Circle ^a	00-00

^a Círculo de 5° alrededor del Zenit.

En la Figura 7.43, el sector Clean Direction comienza a disminuir en NSB a partir de la medianoche, para los sectores Zenit Circle y Coquimbo - La Serena; Ovalle se observa una disminución paulatina en NSB con el tiempo. En el panel derecho, el CCT de la mayoría de los sectores es variable a lo largo de la noche, mientras que para el sector Carén se ve mayoritariamente un aumento en CCT con el tiempo.

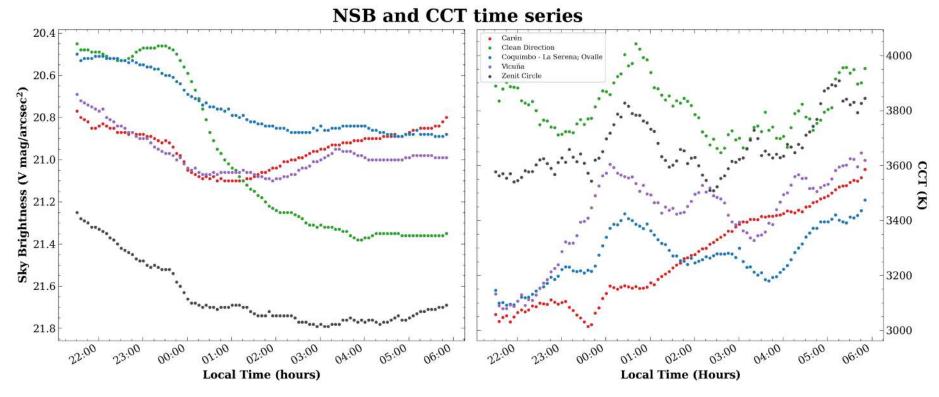


FIGURA 7.43: **Panel izquierdo**: NSB en función de la hora local para los sectores indicados en la Tabla 7.28. **Panel derecho**: CCT en función de la hora local para los mismos sectores. En la esquina superior derecha de la Figura se indica el sector correspondiente para cada color.

7.6.4. Comparación SQC vs GAMBONS

En la Figura 7.44 la luz zodiacal queda cubierta parcialemte por las montañas, mientras que la Vía Láctea presenta poca visibilidad en la imagen real con respecto a la imagen de GAMBONS, y también la parte central de la Vía Láctea se percibe más brillante en la imagen real.

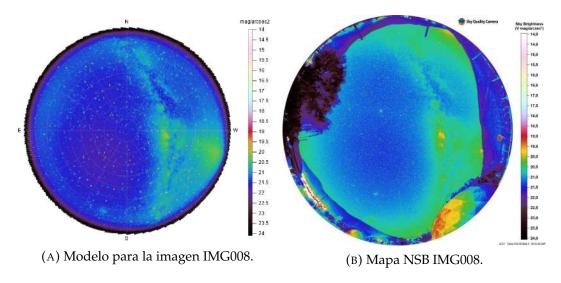


FIGURA 7.44: Comparación entre el modelo GAMBONS (a) y la imagen real IMG005 (b), para el día 05.10.2021 a las 21:30. La barra de color indica el NSB en unidades de mag/arcsec² y en los bordes de la imagen del modelo se indican los cuatro puntos cardinales.

La comparación entre el círculo cenital de 5° entre el modelo y las imágenes de comparación IMG008 e IMG108 se muestran en la Tabla 7.29.

TABLA 7.29: Valores del NSB para los datos reales y para el modelo GAMBONS, considerando el NSB dentro de un círculo de 5° alrededor del zenit.

Imagen	NSB_{SQC} (mag/arcsec ²)	$NSB_{GAMBONS}$ (mag/arcsec ²)	ΔNSB
IMG008	21.20	21.49	0.29
IMG108	21.63	21.82	0.19

En la Tabla 7.30 se presenta el promedio del punto más oscuro y el promedio del círculo de 5° alrededor del zenit. Se encontró que tanto el Observatorio Collowara como el Observatorio Cerro Mayu mostraron puntos menos oscuros (menor valor de NSB).

TABLA 7.30: Valores de NSB y CCT promediados a lo largo de toda la noche para (i) el zenit alrededor de un círculo cenital de 5° y para el punto más oscuro del cielo. El error corresponde a la desviación estándar en el set de imágenes

	Zenit	Punto más oscuro
NSB_{prom} (mag/arcsec ²)	21.65 ± 0.15	21.69 ± 0.14
CCT _{prom} (K)	$3,668 \pm 99$	-

7.6.5. Análisis

NSB/CCT vs ángulo cenital. La predominancia en NSB de la Clean Direction con respecto a las Áreas 1 y 2 hasta 70° en ángulo cenital, se atribuye a la presencia de la Vía Láctea y la luz zodiacal, ya que los valores en CCT para la Clean Direction corresponden a valores asociados a fuentes naturales (sobre los 4,000 K aproximadamente). A lo largo de la noche se puede ver una disminución en NSB para la Clean Direction (ver GIFs perfil NSB; perfil CCT) ya que las fuentes naturales están presentes en esta área de interés sólo al principio de la noche, y de la misma manera la ausencia de las fuentes naturales hace que haya una disminución en los valores de CCT hasta las 04:00, ya que pasarían a verse impactos de las contribuciones artificiales en CCT. Además, aunque desaparezca desaparezca la Vía Láctea o la luz zodiacal, en cielo donde el efecto de las contribuciones artificiales no es tan significativo se deberían esperar de igual forma valores de CCT sobre los 4,000 K (como ocurre en caso del O. Cancana o el O. Cruz del Sur). A pesar de que el Área 2 contiene a la localidad de Carén y ésta se encuentra relativamente cerca al punto de observación (a unos 300 m de distancia aproximadamente), el Área 1 tiene un NSB mayor al horizonte, donde se encuentran las ciudades de Ovalle a 49 km, Andacollo a 73.5 km y Coquimbo - La Serena a 112 km.

Series temporales NSB y CCT. El sector "Carén" experimenta una disminución en NSB desde el comienzo de la noche hasta las 01:00 aproximadamente (ver panel izquierdo Figura 7.43). Al comparar la imagen tomada a las 21:30 en el GIF Info Images con la imagen tomada a las 01:00, se percibe una

disminución del NSB en todo el cielo, y en particular se ve como disminuye la luz que emite la localidad de Carén (que se puede ver bajo las montañas) que va desde los 27° a los 276° en azimut. Considerando el cambio percibido en la luz que emite Carén, esta disminución en NSB que también se observa en los otros sectores, estaría causada por los cambios en las luminarias que se encuentran en la Localidad. En el sector "Carén" también se ve que el NSB aumenta de forma sostenida a partir de las 01:30 hasta que termina la jornada, lo cual probablemente es debido al efecto de una contribución natural, esto es, la presencia de la Vía Láctea que comienza a ascender en altitud a partir de las 01:30, y además esto se ve respaldado por el hecho de que se observa un aumento en CCT, lo cual sería un efecto de fuentes naturales (ver panel izquierdo Figura 7.43).

Comparación con modelo GAMBONS. Se percibe un cielo más brillante en la imagen real que en la imagen del modelo, lo cual probablemente es debido al impacto que genera la localidad de Carén, ya que como se mencionó anteriormente Carén está a unos 300 m del punto de observación. Haría falta idear otra metodología para cuantificar los impactos al cielo nocturno del Observatorio Valle del Sol que tiene una localidad como Carén según la distancia a la que se encuentre del Observatorio. Por ejemplo, ya que se cuenta potencialmente con cuatro instrumentos SQC, se podrían adquirir imágenes al mismo tiempo seleccionando distintos puntos de observación colineales a distintas distancias de Carén para medir los impactos de la CL que genera la localidad.

En la Tabla 7.29 la diferencia entre el NSB cenital del modelo y la imagen real es menor al final de la noche, habiendo una diferencia de 0.1 mag/arsec² entre las dos imágenes comparadas, la cual se podría explicar con el hecho de que hay una disminución en la emisión de luz artificial proveniente de Carén como ya se discutió anteriormente. Esto haría que al final de la noche haya una mayor coincidencia entre los valores de NSB al zenit entre el modelo y la imagen real.

7.7. Del Pangue, Ruta D-445

7.7.1. Fuentes de CL

Las fuentes de CL que se encontraron están listadas en la Tabla 7.31 y también se incluye la distancia a la que se encuentran del Observatorio Del Pangue. La Figura 7.45 muestra una proyección azimutal en RGB y por otro lado en la Figura 7.46 se muestran proyecciones cilíndricas en mapas NSB y CCT donde se indican las fuentes de CL identificadas para el sitio de estudio en cuestión.

TABLA 7.31: Fuentes de CL identificadas que afectan el O. Del Pangue ordenadas de manera ascendente según su azimut.

Lugar	Distancia (km)	Azimut (°)
Ovalle	70.0	219-227
Andacollo	39.0	249-258
Coquimbo - La Serena	60.0	278-308
Ruta 5	12.5	335-9

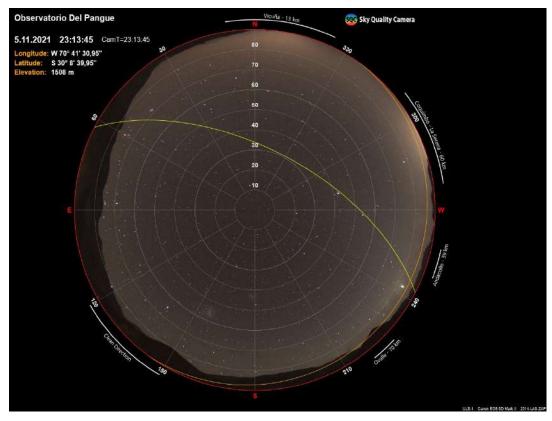


FIGURA 7.45: Proyección azimutal para la imagen IMG019 en RGB. En los bordes de la imagen se indican los valores de azimut al horizonte y los cuatro puntos cardinales. También se indican las fuentes de CL representadas por líneas blancas para su respectivo rango en azimut.

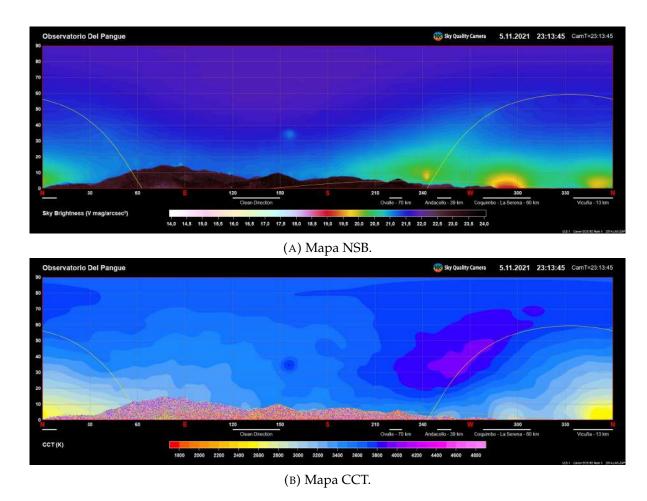


FIGURA 7.46: Proyecciones cilíndricas en (A) NSB y (B) CCT para la imagen IMG005 con las fuentes de CL identificadas.

En la Figura 7.34 se muestran las 3 áreas de interés en una imagen azimutal de NSB y CCT. Como primera observación se tiene que el Área 1 presenta una mayor CL al horizonte que el Área 2, pero en cambio esta última presenta valores de CCT más bajo que alcanzan mayores altitudes que el CCT del Área 1. Adicionalmente en la Tabla 7.22 se muestran los rangos en azimut para las tres áreas de interés junto a las fuentes de CL que contienen.

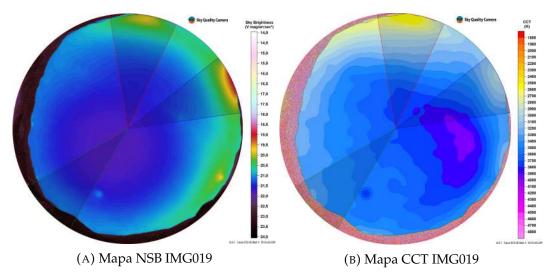


FIGURA 7.47: Se presentan las tres áreas de interés elegidas para Del Pangue, en una proyección azimutal de NSB (a) y de CCT (b). La sección delimitada por el sector circular azul (Área 1) corresponde a dirección en que se ubica Coquimbo - La Serena; en el sector circular rojo (Área 2) se encuentra la dirección correspondiente a Vicuña. El sector circular verde corresponde a la Clean Direction.

TABLA 7.32: Áreas de interes.

Sitio de estudio	Área	Azimut área	Lugares	Azimut lugar	Distancia
(Observatorio)		(°)		(°)	(km)
	1	278-308	Coquimbo - La Serena	278-308	60.0
Del Pangue	2	335-9	Vicuña	335-9	12.5
	Clean Direction	120-150	-	-	-

7.7.2. Perfiles NSB y CCT

7.7.2.1. NSB/CCT vs azimut

Para el caso del Observatorio del Pangue, el anillo azimutal comienza en 260°, y no se hizo un anillo a mayor altura ya que tomando una altura de 1° se consideraban las Áreas 1 y 2. En la Figura 7.48 se tienen dos máximos en NSB a 292° y a 350° en azimut, y también se tienen los mínimos correspondientes en CCT.

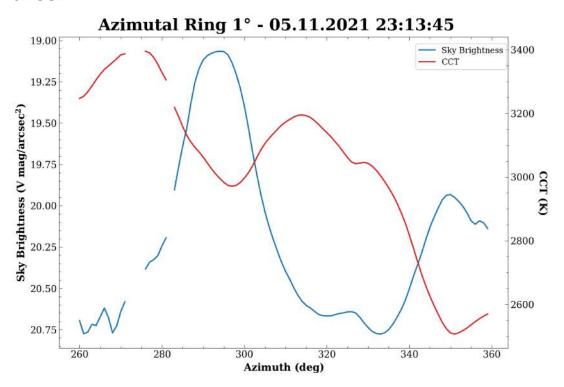


FIGURA 7.48: Anillo azimutal para la imagen IMG019. La línea azul indica el NSB y la línea roja indica el CCT, ambas magnitudes en función del azimut.

7.7.2.2. NSB/CCT vs ángulo cenital

En la Figura 7.49 se muestran los perfiles de NSB y CCT en función del ángulo cenital para las áreas de interés del Observatorio Del Pangue en la Tabla 7.32. La tendencia en NSB de las Áreas 1 y 2 es similar hasta 85° en azimut (Figura 7.49a), donde el Área 1 continúa aumentando hasta alcanzar un valor de 19.24 mag/arcsec² al horizonte, y el NSB del Área 2 se mantiene alrededor de 20.15 mag/arcsec² sobre los 85°. También se ve una disminución

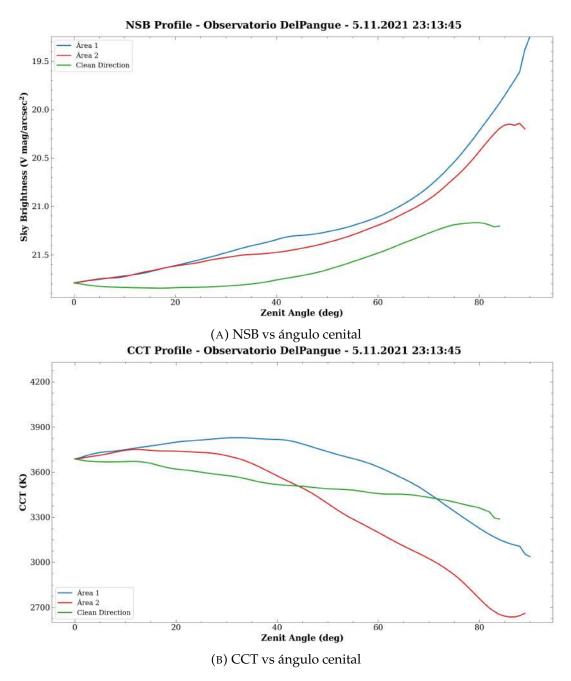


FIGURA 7.49: (a) Gráfico NSB en la banda V y (b) gráfico CCT. Ambas magnitudes en función del ángulo cenital construidos a partir de la imagen IMG019.

en el CCT para las Áreas 1 y 2, mientras que para la Clean Direction el CCT no varía mucho.

En los GIF (disponibles en: perfil NSB; perfil CCT) de NSB no se observan muchas variaciones en las áreas de interés. En la última imagen el NSB de la Clean Direction supera a las otras áreas, y en la proyección azimutal se ve cómo en el sector circular de la Clean Direction hay un aumento de NSB al horizonte. En cuanto a CCT tampoco se observan muchos cambios, aunque

en la última imagen nuevamente se ve un aumento considerable en el CCT de la Clean Direction, que a su vez se refleja en colores violetas en la dirección sureste de la proyección azimutal.

7.7.3. Series temporales NSB y CCT

El recurso visual con todas las Info Images para el Observatorio Del Pangue está diponible en: GIF Info Images. No se observaron variaciones significativas en los mapas NSB y CCT hasta las 03:30, cuando en el mapa NSB aparece una mancha a 10° sobre el horizonte en la dirección a Coquimbo - La Serena, que se intensifica hasta las 04:20 aproximadamente y luego se ve una mayor cantidad de fluctuaciones tanto en NSB como en CCT.

Los sectores elegidos para estudiar sus variaciones temporales se muestran en la Tabla 7.33.

TABLA 7.33: Sectores elegidos para estudiar sus variaciones de NSB y CCT en función del tiempo. En todos los casos (excepto en el caso del sector "Zenit Circle") la altura se consideró desde la separación entre el Sky Border y el cielo, añadiendo 20° en altura.

Sector	Azimut (°)
Andacollo	249-258
Clean Direction	120-150
Coquimbo - La Serena	278-308
Ovalle	219-227
Vicuña	335-9
Zenit Circle ^a	00-00

^a Círculo de 5° alrededor del Zenit.

En la Figura 7.50 el NSB de los sectores Vicuña y Andacollo es mayor al comienzo de la noche, y disminuye en el tiempo. En el panel CCT se observa la misma tendencia para estos sectores. En el sector "Coquimbo - La Serena", se observa un máximo en NSB a las 04:00, que a su vez se corresponde con una disminución en CCT a la misma hora. a las 03:30 el NSB es de 20.50 mag/arcsec² y a las 04:00 tiene un valor de 20.20 mag/arcsec², por lo que se

181

registra un aumento de $0.2\,\mathrm{mag/arcsec^2}$. En CCT se registra una disminución de $3,150\,\mathrm{K}$ a $2,750\,\mathrm{K}$ entre las horas antes mencionadas

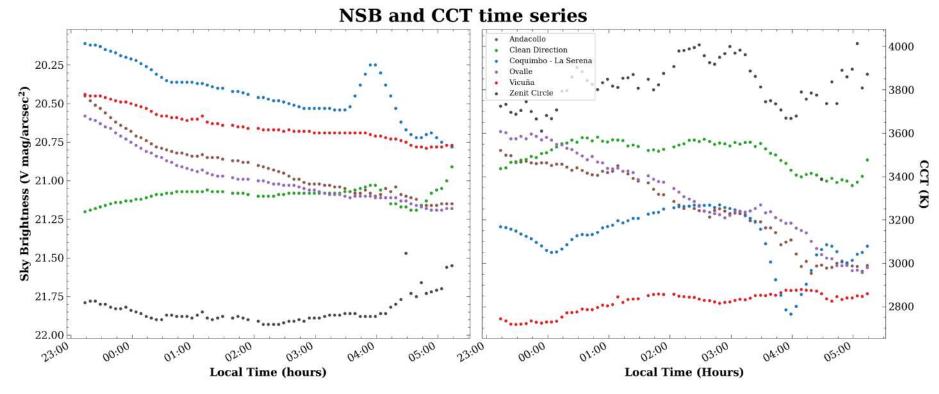


FIGURA 7.50: **Panel izquierdo**: NSB en función de la hora local para los sectores indicados en la Tabla 7.33. **Panel derecho**: CCT en función de la hora local para los mismos sectores. En la esquina superior derecha de la Figura se indica el sector correspondiente para cada color.

7.7.4. Comparación SQC vs GAMBONS

En la Figura 7.51a la contribución de la luz zodiacal se mezcla con la contribución de la Vía Láctea que se encuentra al horizonte. En la imagen real (Figura 7.51b) también es posible observar la contribución natural, aunque justo al oeste hay contribuciones de origen artificial.

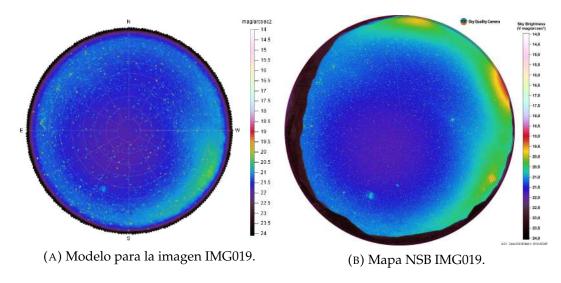


FIGURA 7.51: Comparación entre el modelo GAMBONS (a) y la imagen real IMG005 (b), para el día 05.11.2021 a las 23:13. La barra de color indica el NSB en unidades de mag/arcsec² y en los bordes de la imagen del modelo se indican los cuatro puntos cardinales.

En la Tabla 7.34 los valores de NSB cenital del modelo y la imagen real coinciden para el caso de la IMG041, mientras que para la IMG019 hay una diferencia en el orden de la centésima de mag/arcsec².

TABLA 7.34: Valores del NSB para los datos reales y para el modelo GAMBONS, considerando el NSB dentro de un círculo de 5° alrededor del zenit.

Imagen	NSB_{SQC} (mag/arcsec ²)	$NSB_{GAMBONS}$ (mag/arcsec ²)	ΔNSB
IMG019	21.74	21.81	0.07
IMG041	21.80	21.80	0.00

En la Tabla 7.35 se presenta el promedio del punto más oscuro y el promedio del círculo de 5° alrededor del zenit.

TABLA 7.35: Valores de NSB y CCT promediados a lo largo de toda la noche para (i) el zenit alrededor de un círculo cenital de 5° y para el punto más oscuro del cielo. El error corresponde a la desviación estándar en el set de imágenes

	Zenit	Punto más oscuro
NSB_{prom} (mag/arcsec ²)	21.84 ± 0.09	21.92 ± 0.03
CCT _{prom} (K)	$3,820 \pm 115$	-

7.7.5. Análisis

NSB/CCT vs azimut. De la misma forma en la que se vió en los demas sitios, utilizando la herramienta Light Pollution Map es posible deducir que el primer máximo en NSB a 292° en azimut corresponde a la parte central ciudad de La Serena, mientras que el máximo a 350° concuerda con la dirección en que se encuentra la ciudad de Vicuña. A diferencia del caso del O. El Sauce, donde se vió una predominancia de la ciudad de Coquimbo por sobre la ciudad de La Serena, en este caso ocurre lo contrario, aunque no se podría obtener mayor información de esto, ya que la comparación debería ser para anillos azimutales a la misma altitud. La condición anterior está limitada por la presencia de montañas al horizonte, haciendo que para distintos sitios no siempre sea posible tener anillos azimutales a una misma altura fija.

NSB/CCT vs ángulo cenital. La contribución en NSB del Área 1 disminuye a lo largo de la noche, por lo cual esto podría indicar cambios en la iluminación de la ciudades de Coquimbo - La Serena, ya que este es uno de los dos sitios en la que un área elegida sólo contiene a dichas ciudades por lo cual su contribución se puede estudiar por separado, considerando que en todos los otros sitios de estudio a excepción de Mamalluca, el rango en azimut de las ciudades Coquimbo - La Serena se superpone con los rangos en azimut de otras localidades/ciudades en la misma línea de visión, por lo que sus contribuciones están mezcladas (ver Tabla 7.27). Otra posible explicación para esta disminución del NSB del Área 1 a lo largo de la noche, podría ser

por el efecto atenuador de las nubes ya que las ciudades Coquimbo - La Serena quedan cubiertas por nubosidad a medida que pasa la noche (ver datos de Zoom Earth en la Tabla 6.3). A su vez, a las 4:03 en el perfil NSB se observa un máximo en NSB a 80° en ángulo cenital, que se puede asociar a un frente de nubes distinto proveniente de la costa que se mueve en la dirección este. Esto se puede ver en los datos de Zoom Earth a partir de las 03:44 hasta las 05:37 aproximadamente. Sin embargo, haría falta estudiar en más detalle los efectos que tienen los distintos tipos de nubes en la amplificación o atenuación de CL. Ahora bien, la explicación más probable para el máximo visto en NSB, así como también el mínimo que se observa en el perfil CCT a 80° en ángulo cenital a las 04:03, sería debido al paso de este último frente de nubes sobre el lugar de estudio entre las horas antes mencionadas. El efecto también se percibe en las proyecciones azimutales de los GIFs como "manchas" sobre el horizonte.

Series temporales NSB y CCT. En el GIF Info Images se pueden observar fluctuaciones tanto en NSB como en CCT a partir de las 03:30 aproximadamente, cuya causa se explicariía por el frente de nubes antes mencionado. A diferencia de lo visto en otros observatorios como Collowara, en este caso sí son apreciables fluctuaciones en NSB que estarían asociadas a las nubes, al igual que se observan en CCT.

Si bien las contribuciones artificiales provenientes del horizonte llegan hasta 30° en altitud aproximadamente, en CCT los impactos de la CL llegan hasta el zenit, ya que para un cielo pristino se deberían esperar valores de CCT similares a los vistos en el Observatorio Cruz del Sur o el Observatorio Cancana.

En la Figura 7.50 se puede ver que el zenit no se está muy afectado por la contribuciones artificiales en NSB teniendo un valor de 21.84 mag/arcsec² en promedio a lo largo de toda la noche, aunque en CCT no ocurre lo mismo ya que se observan valores más bajos a los que se cosideran como naturales (sobre los 4,000 K). Se destaca también la subida en NSB para el sector "Coquimbo - La Serena" la cual como se mencionó anteriormente estaría asociada al

paso de un frente de nubes, que a su vez estaría provocando un mínimo en CCT a las 04:00 aproximadamente. Aunque el sector "Vicuña" muestra una menor contribución en NSB que "Coquimbo - La Serena", muestra valores más bajos en CCT, contrariamente a lo que se ha visto en otros observatorios como Mamalluca, Collowara o Cancana. Esto podría deberse a que Vicuña se encuentra más cerca, por lo cual se vería un CCT menor. No obstante hace falta comprender mejor la información que entregan los mapas CCT ya que no en todos los sitios se ha visto que el sector con mayor contribución en NSB es el que muestra valores de CCT más bajos.

Comparación con modelo GAMBONS. En la Figura 7.51 se pueden observar zonas afectadas por CL donde se hace difícil separar las contribuciones naturales y artificiales. Sin embargo, al comparar los valores cenitales se encontraron buenas similitudes entre el modelo y la imagen real, en particular los valores cenitales coinciden completamente para la IMG041 (ver Tabla 7.34). Tanto los valores vistos en NSB en la Figura 7.50 como la similitud en los valores cenitales con el modelo GAMBONS indicarían que el cielo del Observatorio Del Pangue no se ve tan afectado por la CL, a diferencia de sitios como el Observatorio Collowara o Cerro Mayu.

7.8. Pisco Elqui, Paihuano

7.8.1. Fuentes de CL

Las fuentes de CL que se encontraron en este sitio de estudio están listadas en la Tabla 7.36. La Figura 7.52 muestra una proyección azimutal en RGB y por otro lado en la Figura 7.53 se muestran proyecciones cilíndricas en mapas NSB y CCT donde se indican las fuentes de CL identificadas para Pisco Elqui.

TABLA 7.36: Fuentes de CL identificadas que afectan el punto de mediciones en Pisco Elqui ordenadas de manera ascendente según su azimut.

Lugar	Distancia (km)	Azimut (°)
Pisco Elqui	0.3	5-180
Vicuña	22.5	291-310
Coquimbo - La Serena	76.5	277-294
Andacollo	57.8	253-263
Ovalle	85.0	228-235

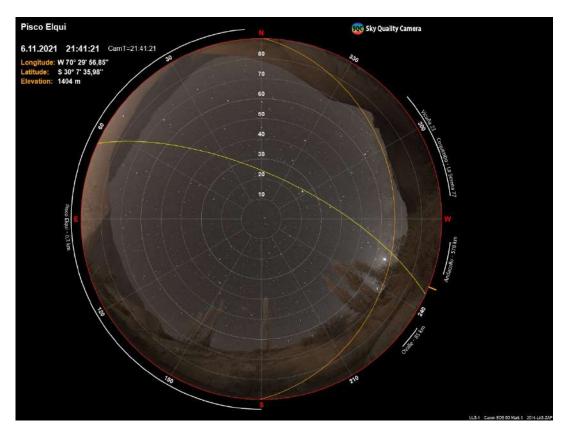
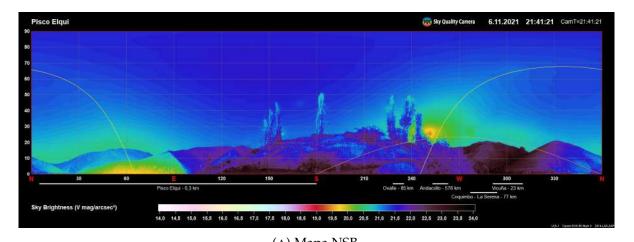



FIGURA 7.52: Proyección azimutal para la imagen IMG016 en RGB. En los bordes de la imagen se indican los valores de azimut al horizonte y los cuatro puntos cardinales. También se indican las fuentes de CL representadas por líneas blancas para su respectivo rango en azimut.

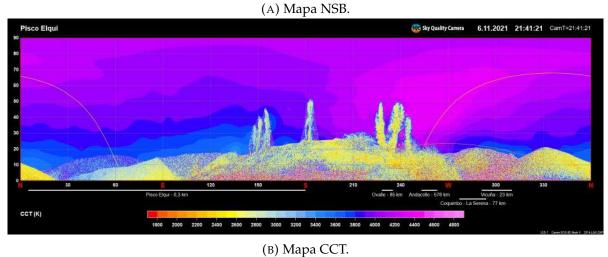


FIGURA 7.53: Proyecciones cilíndricas en (A) NSB y (B) CCT para la imagen IMG005 con las fuentes de CL identificadas.

En la Figura 7.54 se muestran las áreas de interés en la imagen IMG006. El Área 2 tiene una extensión de de 165° en azimut, ya que en toda la zona este del hemisferio superior de la imagen hay contribuciones provenientes de Pisco Elqui. A diferencia de otros sitios de estudio, en este no se tiene una Clean Direction debido a la cercanía del punto de mediciones al pueblo por la parte este, y además por la parte oeste se tienen contribuciones naturales así como artificiales. En la Tabla 7.37 se muestran los rangos de azimut elegidos para las dos áreas de interés.

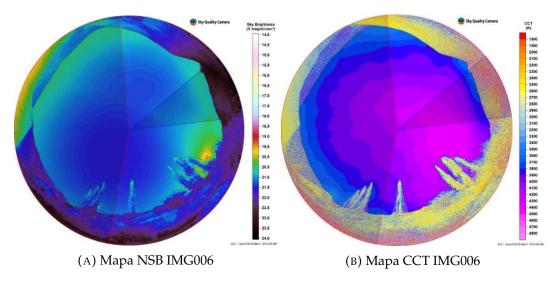


FIGURA 7.54: Se presentan las dos áreas de interés elegidas para Cerro Mayu en una proyección azimutal de NSB (a) y de CCT (b). La sección delimitada por el sector circular azul (Área 1) corresponde a dirección en que se ubica Coquimbo - La Serena; Vicuña. La región delimitada por el sector circular rojo (Área 2) contiene a la localidad de Pisco Elqui.

TABLA 7.37: Áreas de interés.

Sitio de estudio	Área	Azimut área	Lugares	Azimut lugar	Distancia
(Observatorio)		(°)		(°)	(km)
Pisco Elqui	1	277-310	Vicuña Coquimbo - La Serena	291-310 277-294	22.5 76.5
	2	5-170	Pisco Elqui	5-180	0.3

7.8.2. Perfiles NSB y CCT

7.8.2.1. NSB/CCT vs azimut

En la Figura 7.55 se presenta el anillo azimutal para la imagen IMG006. El anillo se contruyó para una altitud fija de 21°, ya que como se puede ver en la Figura 7.54 las montañas alcanzan altitudes de alrededor de 20° sobre el horizonte. Entre los 143° y 262° en azimut no hay valores para NSB ni CCT debido a la presencia de las montañas. Los principales máximos se encuentran a 263° en azimut, donde el NSB tiene un valor de 20.34 mag/arcsec², y en 57° en azimut donde el NSB tiene un valor de 20.63 mag/arsec².

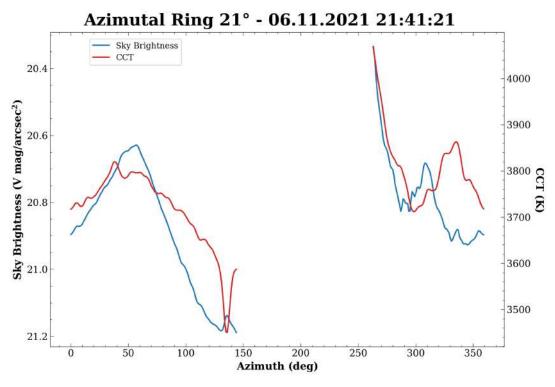


FIGURA 7.55: Anillo azimutal para la imagen IMG006. La línea azul indica el NSB y la línea roja indica el CCT, ambas magnitudes en función del azimut.

7.8.2.2. NSB/CCT vs ángulo cenital

En el perfil NSB (Figura 7.56a), se ve un aumento exponencial con el ángulo cenital para las Áreas 1 y 2. El Área 1 tiene un máximo en NSB de 20.65

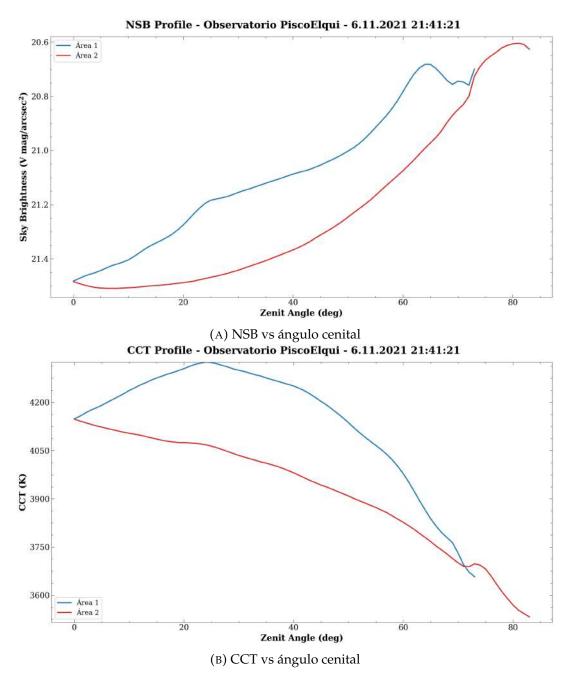


FIGURA 7.56: (a): NSB en la banda V para las 2 áreas de interés indicadas en la Figura 7.54 en función del ángulo cenital en grados. (b): CCT para las mismas áreas. El gráfico fue construido a partir de la imagen IMG006.

mag/arcsec² en 64° en ángulo cenital, mientras que el Área 2 alcanza un valor máximo de NSB de 20.60 mag/arcsec² para 81° en ángulo cenital. Asimismo se destaca que el Área 1 no alcanza su máximo en NSB al mayor ángulo cenital (el cual es 73°) mientras que el Área 2 alcanza su máximo NSB prácticamente al mayor ángulo cenital (que es 83°).

Los GIFs de las variaciones temporales en los perfiles de NSB y CCT están disponibles en los siguientes enlaces: perfil NSB; perfil CCT. De la misma forma también se construyó el GIF Info Images a partir de las imágenes obtenidas durante esa noche.

7.8.3. Comparación SQC vs GAMBONS

En la Figura 7.57a las principales diferencias entre el modelo y la imagen se observan en la parte noreste del hemisferio superior, donde la imagen real presenta contribuciones de origen artificial. Asimismo, en la dirección oeste en el modelo se puede observar la contribucion de la luz zodiacal junto a la de la Vía Láctea, mientras que en la imagen real estas contribuciones no se observan en su totalidad debido a la presencia de obstáculo a \sim 25° de altitud sobre el horizonte.

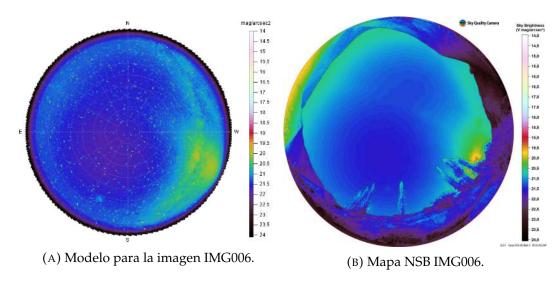


FIGURA 7.57: Comparación entre el modelo GAMBONS (a) y la imagen real IMG006 (b), para el día 06.11.2021 a las 21:41. La barra de color indica el NSB en unidades de mag/arcsec² y en los bordes de la imagen del modelo se indican los cuatro puntos cardinales.

En la Tabla 7.38 los valores de NSB cenital del modelo y la imagen real están por debajo de las 0.05 mag/arcsec². No se perciben muchas diferencias para las imágenes IMG006 e IMG008 ya fueron tomadas en un corto intervalo de tiempo (21:41 y 21:49 respectivamente). Aún así, al haber pocas diferencias con respecto al modelo es posible afirmar que las zonas cercanas al zenit

del cielo aún no se ven tan afectadas por CL, aunque en la parte sureste del hemisferio superior cercana al horizonte sí está afectada por CL.

TABLA 7.38: Valores del NSB para los datos reales y para el modelo GAMBONS, considerando el NSB dentro de un círculo de 5° alrededor del zenit.

Imagen	NSB_{SQC} (mag/arcsec ²)	$NSB_{GAMBONS}$ (mag/arcsec ²)	ΔNSB
IMG006	21.49	21.53	0.03
IMG008	21.50	21.55	0.05

En la Tabla 7.39 se presenta el promedio del punto más oscuro y el promedio del círculo de 5° alrededor del zenit.

TABLA 7.39: Valores de NSB y CCT promediados a lo largo de toda la noche para (i) el zenit alrededor de un círculo cenital de 5° y para el punto más oscuro del cielo. El error corresponde a la desviación estándar en el set de imágenes

	Zenit	Punto más oscuro
NSB_{prom} (mag/arcsec ²)	21.50 ± 0.01	21.61 ± 0.01
CCT _{prom} (K)	$\textbf{4,182} \pm \textbf{18}$	-

7.8.4. Análisis

NSB/CCT vs azimut. El máximo en NSB a 263° en azimut se atribuye a la presencia de la luz zodiacal y la Vía Láctea, que a su vez muestra un máximo en CCT para el mismo azimut (línea roja, Figura 7.55). Asimismo se puede observar cualitativamente la presencia de estas fuentes en la Figura 7.53, donde se puede ver que tanto la línea de la eclíptica como la línea que indica el plano de la Vía Láctea pasan por el azimut antes mencionado. Por otra parte, el máximo en NSB a 57° en azimut se atribuye a la contribución de la zona central de la localidad de Pisco Elqui en cuya dirección se encuentra la Iglesia y la Plaza Pisco Elqui.

NSB/CCT vs ángulo cenital. A diferencia de otros sitios, en este caso no es posible comparar las áreas de interés contaminadas con una zona libre de

CL. Para tener una Clean Direction como punto de comparación se debería cambiar la localizacion desde la cual se realizan mediciones, idealmente ubicándose a una mayor distancia de Pisco Elqui. El máximo de NSB observado en el Área 1 se puede explicar debido a la presencia de la Vía Láctea junto a la luz zodiacal. La presencia de estas fuentes también se observa en la Figura 7.54a donde parte de la Vía Láctea (y probablemente también parte de la luz zodiacal) atraviesa el Área 1. Sin embargo, entre 69° y 73° en ángulo cenital el aumento en NSB probablemente es debido a la contribución de Coquimbo - La Serena y Vicuña, ya que también en el perfil CCT (Figura 7.56b) se observa una disminución constante. Para el Área 2 el aumento exponencial de NSB está dominado por las contribución de Pisco Elqui. Asimismo, se puede observar una disminución constante en CCT de hasta 3,500K, posiblemente indicar de uso de tecnologías de iluminación LED cálidos en la localidad. En este escenario la cercanía a Pisco Elqui (a 300 m aproximadamente) hace que el Area 2 tenga una mayor contribución al horizonte que el Área 1, donde el lugar más cercano al punto de medición corresponde a Vicuña a 22 km de distancia.

Series temporales NSB y CCT. El gráfico de los cambios temporales en NSB y CCT no se construyó ya que no aportaron mucha más información de la que aportan los GIF, considerando que en el lugar de medición no contaba con las condiciones logísticas óptimas para tomar imágenes durante toda la noche. En el GIF de Info Images, se aprecia el cambio en CCT en la dirección oeste debido a la luz zodiacal y la Vía Láctea. En cuanto a fuentes artificiales no es posible evidenciar cambios notables.

Se puede observar en el GIF Info Images que los impactos de Pisco Elqui se observan hasta altitudes de 70° en CCT. En NSB los efecto se observan hasta alturas similares (ver Figura 7.53a).

7.9. Cerro Mayu, Quebrada de Talca

7.9.1. Fuentes de CL

Las fuentes de CL que se encontraron están listadas en la Tabla 7.40 y también se incluye la distancia a la que se encuentran del Observatorio Cerro Mayu. La Figura 7.58 muestra una proyección azimutal en RGB y por otro lado en la Figura 7.59 se muestran proyecciones cilíndricas en mapas NSB y CCT donde se indican las fuentes de CL identificadas para el Observatorio Cerro Mayu.

TABLA 7.40: Fuentes de CL identificadas que afectan el O. Cerro Mayu ordenadas de manera ascendente según su azimut.

Lugar	Distancia (km)	Azimut (°)	
Pelícana - La Calera Baja	3.1	13-68	
Vicuña	30.0	89-99	
Andacollo	25.6	188-197	
Ovalle	67.4	190-201	
Quebrada de Talca Sur	2.45	194-230	
Quebrada de Talca	1.3	263-311	
Coquimbo - La Serena	25.0	268-312	
Ruta 41-CH	-	303-50	
Cutún Alto	3.5	326-354	

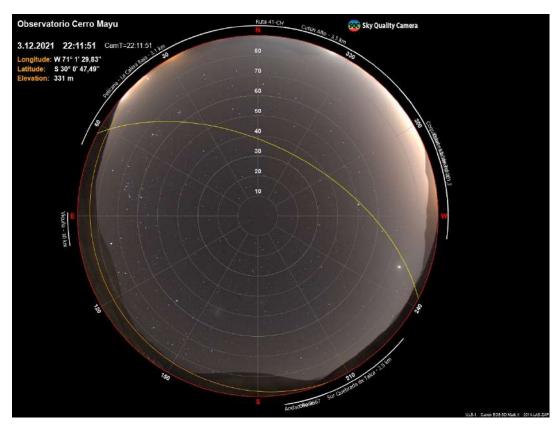
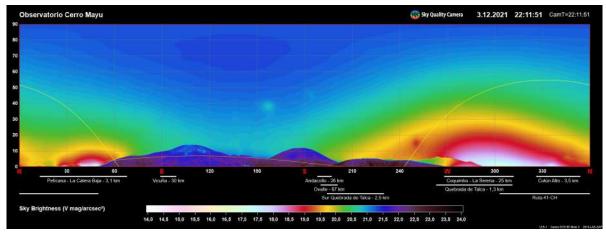
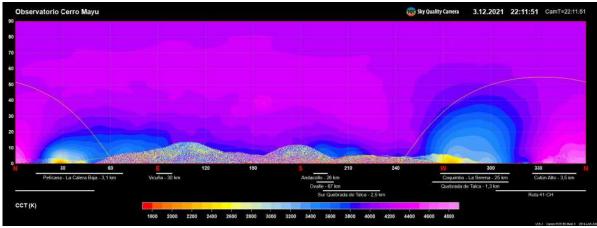




FIGURA 7.58: Proyección azimutal para la imagen IMG016 en RGB. En los bordes de la imagen se indican los valores de azimut al horizonte y los cuatro puntos cardinales. También se indican las fuentes de CL representadas por líneas blancas para su respectivo rango en azimut.

(A) Mapa NSB.

(B) Mapa CCT.

 $FIGURA\ 7.59: Proyecciones\ cilíndricas\ en\ (A)\ NSB\ y\ (B)\ CCT\ para\ la\ imagen\ IMG005\ con\ las\ fuentes\ de\ CL\ identificadas.$

En la Figura 7.60 se muestran las áreas de interés en la imagen IMG016. El Área 1 tiene una extensión de de 176° en azimut, ya que en toda la zona oeste del hemisferio superior de la imagen hay contribuciones al horizonte de manera continua. Asimismo en la Tabla 7.41 se muestran los rangos de azimut elegidos para las tres áreas de interés, así como también los azimut de las fuentes de CL que contienen.

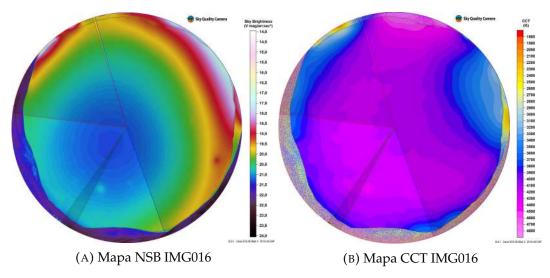


FIGURA 7.60: Se presentan las tres áreas de interés elegidas para Cerro Mayu en una proyección azimutal de NSB (a) y de CCT (b). La sección delimitada por el sector circular azul (Área 1) corresponde a dirección en que se ubica Coquimbo - La Serena; las localidades Quebrada de Talca y Cutún Alto, junto a las Rutas 5 y 41-CH. La región delimitada por el sector circular rojo (Área 2) contiene a las localidades Pelícana y La Calera. El sector circular verde corresponde a la Clean Direction.

TABLA 7.41: Áreas de interés.

Sitio de estudio (Observatorio)	Área	Azimut área	Lugares	Azimut lugar	Distancia (km)
Cerro Mayu	1	200-16	Las Rojas; Cutún Alto	320-354	4.3
			Ruta 5	318-10	-
			Ruta 41-CH	303-50	-
			Coquimbo - La Serena	268-312	25.0
			Quebrada de Talca	200-319	1.2
	2 17-83 Pe		Pelícana; La Calera	17-83	3.1
	Clean Direction	145-152	-	-	-

7.9.2. Perfiles NSB y CCT

7.9.2.1. NSB/CCT vs azimut

En la Figura 7.61 se presenta el anillo azimutal para la imagen IMG016. El anillo se contruyó para una altitud fija de 6°, donde se observa una falta de datos entre los 75° y 200° en azimut aproximadamente, debido a que dicha altitud aún se interceptaban montañas por lo que en esos rango no hay información de NSB ni CCT. Los principales máximos se encuentran a 46° en azimut, donde el NSB tiene un valor de 18.98 mag/arcsec², y en 299° en azimut donde el NSB tiene un valor de 17.93 mag/arsec².

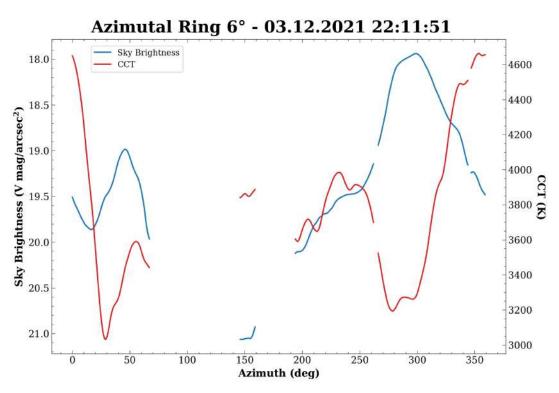


FIGURA 7.61: Anillo azimutal para la imagen IMG016. La línea azul indica el NSB y la línea roja indica el CCT, ambas magnitudes en función del azimut.

7.9.2.2. NSB/CCT vs ángulo cenital

En el gráfico NSB vs ángulo cenital (Figura 7.62a), se ve un aumento exponencial con el ángulo cenital para las Áreas 1 y 2. En el horizonte el valor de NSB para el Área 1 es de 17.03 mag/arcsec², mientras que el Área 2 alcanza

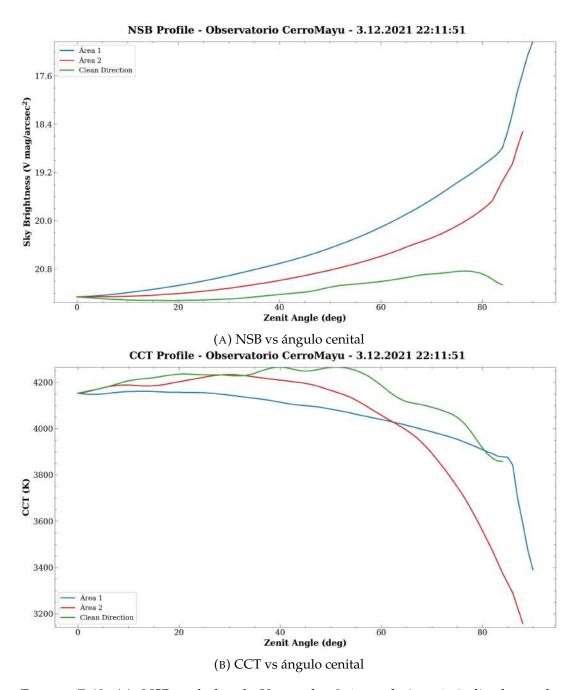


FIGURA 7.62: (a): NSB en la banda V para las 3 áreas de interés indicadas en la Figura 7.60 en función del ángulo cenital en grados. (b): CCT para las mismas áreas. El gráfico fue construido a partir de la imagen IMG003.

un valor máximo de NSB de 18.52 mag/arcsec² para 88° en ángulo cenital. Hay una clara diferencia entre las tendencias de las Áreas contaminadas y la Clean Direction, tendiendo esta último un valor de 21.06 mag/arcsec² en NSB para 84° en ángulo cenital.

Los GIFs de las variaciones temporales en los perfiles de NSB y CCT están disponibles en los siguientes enlaces: perfil NSB; perfil CCT. De la misma forma también se construyó el GIF Info Images a partir de las imágenes obtenidas durante esa noche.

7.9.3. Comparación SQC vs GAMBONS

En la Figura 7.63a se observan contribuciones artificiales en una gran parte del horizonte. Asimismo, se pierde la visibilidad de la luz zodiacal que s ve en la dirección suroeste de la imagen del modelo.

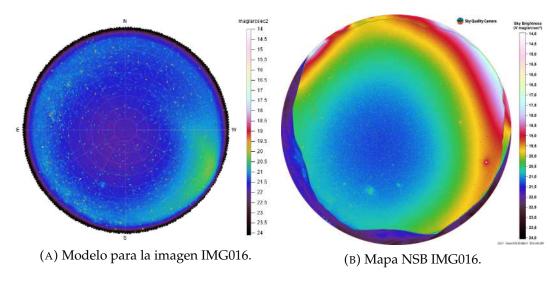


FIGURA 7.63: Comparación entre el modelo GAMBONS (a) y la imagen real IMG016 (b), para el día 03.12.2021 a las 22:11. La barra de color indica el NSB en unidades de mag/arcsec² y en los bordes de la imagen del modelo se indican los cuatro puntos cardinales.

En la Tabla 7.42 los valores de NSB cenital del modelo y la imagen real para ambas imágenes superan la media mag/arcsec².

TABLA 7.42: Valores del NSB para los datos reales y para el modelo GAMBONS, considerando el NSB dentro de un círculo de 5° alrededor del zenit.

Imagen	NSB_{SQC} (mag/arcsec ²)	$NSB_{GAMBONS}$ (mag/arcsec ²)	ΔNSB
IMG016	21.23	21.81	0.58
IMG021	21.27	21.82	0.55

En la Tabla 7.43 se presenta el promedio del punto más oscuro y el promedio del círculo de 5° alrededor del zenit. Como se mencionó anteriormente

el Observatorio Cerro Mayu junto al Observatorio Collowara mostraron los puntos menos oscuros (menor valor de NSB) de entre todos los sitios.

TABLA 7.43: Valores de NSB y CCT promediados a lo largo de toda la noche para (i) el zenit alrededor de un círculo cenital de 5° y para el punto más oscuro del cielo. El error corresponde a la desviación estándar en el set de imágenes

	Zenit	Punto más oscuro		
NSB_{prom} (mag/arcsec ²)	21.27 ± 0.01	21.34 ± 0.01		
CCT _{prom} (K)	$\textbf{4,146} \pm \textbf{26}$	-		

7.9.4. Análisis

NSB/CCT vs azimut. El máximo en NSB a 46° en azimut se identifica con las localidades Pelícana y La Calera, mientras que el máximo a 299° en azimut coincide con la dirección al centro de la ciudad de La Serena. Se destaca también que en rango de 324° a 13° en azimut, hay valores de CCT que llegan hasta 4,650 K, lo cual indica probablemente que este rango se tiene una contribución asociada al uso de lámparas LED blancas.

NSB/CCT vs ángulo cenital. En este Observatorio es donde se ha visto el menor valor de NSB al horizonte. Las Áreas 1 y 2 muestran un NSB mucho mayor que la Clean Direction al horizonte, donde el Área 1 muestra un NSB 2.27 mag/arcsec² mayor a la Clean Direction para 84° en azimut, y para el Área 2 la diferencia es de 1.72 mag/arcsec². Para ángulo cenitales menores a 60° el CCT de las tres áreas es similar y tiene valores que típicamente se asocian a fuentes naturales (mayores a 4,000 K). Para el Área 1, el NSB al horizonte es dos mag/arcsec² mayor que lo visto en el O. Collowara. Esto se explicaría con el hecho de que este sitio es el más cercano a las ciudades de Coquimbo - La Serena (a 25 km de distancia), y además también está muy cercano a varias localidades (Quebrada de Talca, Pelícana, La Calera). En cuanto a CCT se tiene una caída brusca para el CCT del Área 1 a 85°, la cual estaría asociada a la contribución de Coquimbo - La Serena, ya que en la Figura 7.60 se distinguen dos isofotas de CCT al horizonte a 278° y 298° en

azimut aproximadamente, que coinciden con las direcciones de los centros de las ciudades de Coquimbo y La Serena respectivamente.

Series temporales NSB y CCT. En este caso el gráfico de series temporales no se construyó ya que no aportaron mucha más información de la que aportan los GIF, considerando que debido a las condiciones climáticas de esa noche solo se contó con una muestra de 5 imágenes. Más aún, en los GIF de perfiles NSB/CCT e Info Images, no se perciben muchos cambios en NSB o CCT, por lo que es de vital importancia contar con un monitoreo a lo largo de toda la noche con el fin de detectar cambios en NSB y CCT.

En el GIF Info Images se observa que gran parte del cielo muestra valores de CCT naturales, es decir, sobre los 4,000 K por lo que no se debería esperar tener un cielo tan contaminado como se ve en NSB. Esta problemática se explica con el hecho de que el mapa CCT efectivamente estaría dominado por contribuciones artificiales, en particular, lámparas LED blancas. En la dirección de 324° a 13° en azimut se ve como la contribución en CCT es más intensa al horizonte que a alturas superiores, alcanzando valores de hasta 4,600 K al horizonte. Este escenario puede llevar a confundir un cielo natural con un cielo contaminado por las tecnologías de iluminación antes mencionadas, cuyas contribuciones llegan hasta el zenit, por lo cual el hecho de poder complementar la información de NSB y CCT da la posibilidad de poder comprender mejor la CL, pudiendo identificar el tipo de lámparas que están provocando CL en un lugar dado.

Capítulo 8

Discusiones generales

El valor del punto más oscuro en NSB, y los valores cenitales de NSB y CCT promediados a lo largo de la noche puede ser un indicador del grado de CL que sufre un cielo nocturno, aunque también deben ser considerados los perfiles de NSB y CCT que permite obtener la SQC para estudiar la CL en toda la bóveda celeste. Los resultados obtenidos también han sido comparados con datos que entrega el modelo GAMBONS.

El modelo GAMBONS considera la radiancia del brillo del cielo vista por un observador como la suma de varias contribuciones, esto es, la luz estelar integrada, la luz galáctica difusa, la luz extragaláctica, la luz zodiacal y el airglow. Asimismo, cuando la luz ingresa a la atmósfera ésta se ve afectada por efectos de absorción y scattering antes de ser vista por el observador, dichos efectos también son considerados en el modelo. Finalmente también se debe tener en cuenta la radiancia que se origina en la atmósfera superior, esto es, el Airglow. Luego, es posible obtener el brillo natural del cielo para una dada ubicación y fecha. La principal innovación GAMBONS con respecto a modelos anteriores es el uso del catálogo Gaia-EDR3 para obtener la luz estelar integrada (para estrellas más brillantes no consideradas en el catálogo Gaia se utiliza el catálogo Hipparcos). Más aún, al hacer uso de los datos de Gaia es posible obtener la radiancia en cualquier banda fotométrica. Sin embargo, hay dos parámetros de entrada que son determinantes para la confiabilidad del modelo, los cuales son el airglow y las propiedades de aerosoles que varían según el lugar y la fecha de observación, por lo que se deben utilizar otras bases de datos para determinar el valor de dichos parámetros. Para el caso del Airglow, el modelo utiliza un espectro sintético de Airglow computado para Cerro Paranal (Noll et al. 2012) que se encuentra a una altitud de 2,640 m de altitud sobre el nivel del mar por lo cual pueden haber diferencias en la aplicabilidad del modelo en algunos de los sitios de estudio visitados ya que sus condiciones atmosféricas pueden variar con las que se tienen en Cerrro Paranal.

Se destaca también que, si se ordena crecientemente el NSB cenital por cada sitio de estudio, este orden no se corresponde con la disposición que tendrían en CCT. Esto implica que un valor de NSB mayor no necesariamente se asociaría a un valor de CCT mayor y viceversa.

Considerando los menores valores de NSB y CCT, los tres lugares que más sufren CL en la Región de Coquimbo serían los Observatorios Cerro Mayu, Collowara y Valle del Sol, considerando también que son los sitios que tienen una mayor diferencia entre los valores de NSB cenital con el modelo GAMBONS, siendo mayor a la media mag/arsec² para el Observatorio Cerro Mayu. A pesar de lo anterior la comparación del grado de CL de un sitio con respecto a otro está condicionada según varios factores; el primero de ellos es que los datos fueron tomados en lugares y fechas distintas, lo cual es un factor determinante ya que tanto las condiciones climáticas, como la contribución de las fuentes naturales son parámetros altamente variables en escalas de tiempo cortas y largas. La otra razón es que aún falta comprender mejor como se modula el CCT según las condiciones climáticas, por lo que se podría cambiar la manera en que se toman datos ya sea incorporando un instrumento capaz de medir la cobertura de nubes; y a su vez se podría idear una metodología a manera de tomar imágenes desde distintos sitios de interés al mismo tiempo. Cabe destacar también que los resultados obtenidos para Pisco Elqui y el Observatorio Cerro Mayu sólo son representativos de una pequeña parte de toda la noche, por lo que haría falta volver a realizar mediciones en dicho lugar para llegar a obtener una cantidad de imágenes similar a las obtenidas en los demás observatorios para estudiar los cambios en NSB y CCT en este sitio. Como referencia, entre todos los sitios visitados durante la Campaña de Observación, el NSB cenital se encuentra entre 20.93 y 21.86 mag/arcsec², mientras que el CCT varía entre 3,510 y 4,332 K.

Se encontró una mayor dispersión en los valores de NSB en los tres primeros sitios (El Sauce, Collowara y Cruz del Sur), la cual podría ser debido al paso de la Vía Láctea por el zenit según la fecha en la que fueron tomados los datos. Justamente en los sitios donde la Vía Láctea se encuentra a menores altitudes a lo largo de la noche (ver GIFs Info Images) la dispersión en NSB es menor (Mamalluca, Valle del Sol y Del Pangue). Sin embargo esta tendencia no es totalmente igual para la dispersion en los valores cenitales de CCT, donde la mayor dispersión se encuentra para el caso de Cancana, la cual podría estar relacionada a la cobertura de nubes, ya que fue la fecha en que se vio una mayor nubosidad en los datos de Zoom Earth. Al igual que ocurre en la dispersión de NSB, la dispersión en CCT es menor para los sitios Mamalluca, Valle del Sol y Del Pangue.

Ahora bien, a la fecha no es posible comparar los resultados obtenidos en este trabajo con datos o imágenes obtenidas en estudios similares previos en la zona, es decir, enfocados en zonas de relevancia astro-turística, ya que al día de hoy no existen estudios de estas características. A pesar de lo anterior, existen imágenes SQC capturadas alrededor del globo, disponibles en la página lightpollutionmap.info, por lo que es posible ver en que estado se encuentra la CL en la Región de Coquimbo con respecto a otros lugares del mundo teniendo en cuenta los factores al comparar el grado de CL de un sitio con respecto a otro discutido anteriormente. Se escogieron tres lugares como punto de comparación: Observatorio Calar Alto, España; Capitol Reef National Park, Utah, Estados Unidos; Col du Galibier, Francia. Los lugares anteriores fueron elegidos de manera tal de comparar con un Observatorio profesional afectado por CL, un parque nacional con calidad de cielos remarcables, y un sitio con características geográficas similares a los lugares donde se instalan observatorios, en este caso se eligió el pueblo de Col du Galibier por encontrarse cerca de la cadena montañosa de Los Alpes, y también por estar a una altitud típica de observatorios profesionales (2,645 m sobre el nivel del mar). Asimismo se eligió el Observatorio Cruz del Sur como uno de los sitios estudiados en este trabajo para comparar, considerando tanto

por su relevancia astro-turística y como por mostrar uno de los cielos menos contaminados lumínicamente. En este caso se comparó una sola imagen disponible en cada uno de los tres sitios, junto a una imagen tomada desde el O. Cruz del Sur. También se destaca que las imágenes fueron tomadas en condiciones de clima despejado.

En la Figura 8.1 se tiene el mapa NSB y CCT del Observatorio Cruz del sur en las imágenes (g) y (h) respectivamente. Al comparar el grado de CL con otros sitios, se observa que por una parte no es el lugar más contaminado, pero tampoco es lugar que sufre menos CL. El cielo de la Ruta 95, Utah, es el cielo más pristino entre los cuatro sitios, por lo que en EE. UU. aún existen sitios con calidad de cielos nocturnos remarcable. La diferencia en NSB en un círculo de 30° alrededor del zenit y en un anillo de 10° de altitud al horizonte supera la media mag/arcsec² al comparar los dos sitios antes mencionados (ver Tabla 8.1). En términos de visibilidad de estrellas, en el Observatorio Cruz del Sur se pierde la visibilidad de alrededor de 3,000 estrellas a altitudes cercanas al horizonte con respecto al cielo de la Ruta 95 (Figura 8.2). La situación en el O. Cruz del Sur se asemeja algo más al sitio Col du Galibier, un lugar ubicado en Los Alpes a 2,645 m de altitud. En la Tabla 8.1 se observa una similitud entre los dos sitios en NSB, pero se encuentra una diferencia al CCT calculado al horizonte (entre 80° y 90° en ángulo cenital), que probablemente se debe a la diferencia en los tipo de fuentes artificiales que afectan los sitios. Con respecto al Observatorio Calar Alto, éste sufre un grado de CL mucho mayor que el Observatorio Cruz del Sur, considerando además que Calar Alto es un Observatorio profesional. En este caso, se pierde la visibilidad de aproximadamente 5,000 estrellas a 10° sobre el horizonte con respecto a la Ruta 95.

Como se puede ver, aún exiten sitios en el mundo que cuentan con calidad de cielos pristinos, sin embargo es importante continuar con un monitoreo constante para tener bajo control la CL y así preservar la oscuridad de los cielos nocturnos.

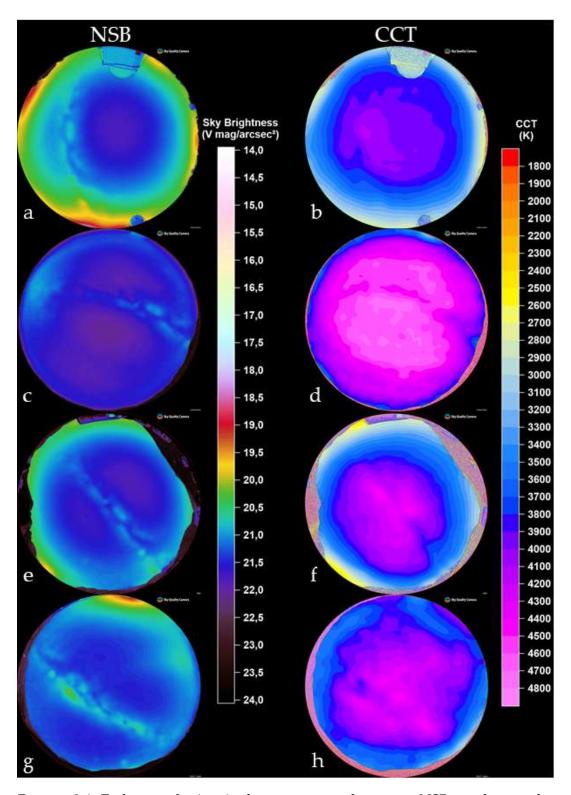


FIGURA 8.1: En los paneles izquierdos se muestran los mapas NSB y en los paneles derechos los mapas CCT para los cuatro sitios de comparación. (a) y (b) corresponde al Observatorio Calar Alto, (c) y (d) a la Ruta 95, Utah, (e) y (f) a Col du Galibier y (g) y (h) al Observatorio Cruz del Sur.

TABLA 8.1: Comparación entre los 4 sitios elegidos. Se indica el NSB y CCT para un círculo alrededor del zenit de 30° y también para un anillo entre 80° y 90° en ángulo cenital. Los valores de NSB y CCT corresponden a una sola imagen de la noche en cada uno de los lugares listados, para la fecha y hora correspondiente.

					NSB (mag/arcsec ²)		CCT (K)	
Sitio de estudio	Latitud (°)	Longitud (°)	Altitud (m)	Fecha y hora local	0-30	80-90	0-30	80-90
O. Calar Alto, España	37.222471	-2.546051	2168	2011/07/04—22:01	21.63	19.91	4,063	3,014
Ruta 95, Utah, EE. UU.	38.168853	-110.623748	1489	2017/08/26—01:44	21.81	21.51	4,744	3,842
Col du Galibier, Francia	45.064083	06.407639	2645	2021/08/10—00:00	21.51	20.50	4,315	2,875
O. Cruz del Sur, Chile	-31.203595	-71.000195	1134	2021/07/09—20:40	21.32	20.75	4,353	3,644

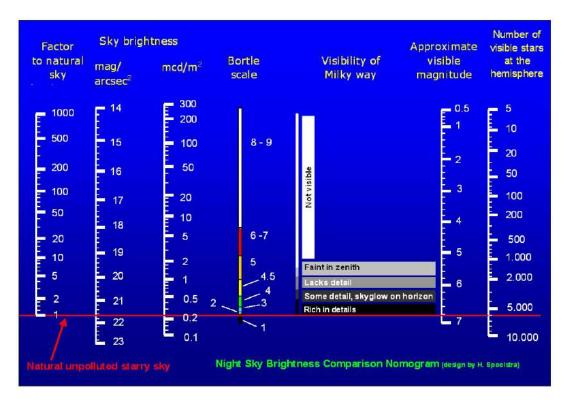


FIGURA 8.2: Nomograma de comparación de NSB. Fuente: darkskiesawareness.org.

Parte III

Conclusiones y Trabajos Futuros

Capítulo 9

Conclusiones y Trabajos Futuros

En este trabajo se ha llevado a cabo un estudio sistemático y cuantitativo sobre el estado actual de la CL que sufren los cielos nocturnos de distintos observatorios astro-turísticos de la Región de Coquimbo. Para ello se ha empleado el uso de cámaras réflex equipadas con una lente ojo de pez calibradas previamente en laboratorio que permiten obtener información del brillo del cielo en unidades de mag/arsec² y también información de su temperatura de color correlacionada (CCT) en unidades Kelvin. Adicionalmente se utilizó la información de distintas bases de datos para comprender mejor el fenómeno de la CL, las cuales fueron la plataforma que provee información meteorológica Zoom Earth, la inferfaz web Light Pollution Map que otorga información de radiancia a partir de el uso de instrumentos satelitales, y por último se complementaron los resultados obtenidos con el uso de simulaciones del cielo nocturno mediante el modelo GAMBONS.

En las siguientes secciones se explican las conclusiones derivadas de la investigación y también se da pie para distintos trabajos futuros que se pueden desarrollar en la línea de investigación de la CL.

9.1. Conclusiones

El estudio consistió en una campaña de observación durante 8 meses cubriendo 8 observatorios astro-turísticos situados en la Región de Coquimbo. Debido a que el estudio se realizó durante la pandemia, no fue posible ingresar al Valle del Elqui en ciertas fechas, por lo que se decidió buscar otros

observatorios astro-turísticos fuera del Valle del Elqui para mantener la continuidad de mediciones mes a mes. Como se mencionó anteriormente se obtuvieron datos mediante fotometría con cámaras refléx equipadas con lentes ojo de pez, i.e., Sky Quality Cameras, donde los principales hallazgos y aportes de la investigación fueron:

- Se logró refinar los pasos seguir en el manejo del instrumento en terreno visto en Uchima-Tamayo, 2021, con el fin de poder replicar la adquisición de datos en investigaciones futuras afines; así como también se expuso el proceso llevado a cabo para la reducción de los datos brutos mediante el uso del software "Sky Quality Camera".
- Se estudió la CL en los distintos sitios de estudio identificando las principales fuentes artificiales mediante una correlación entre los mapas de radiancia del instrumento VIIRS (Light Pollution Map) y las imágenes tomadas por la SQC. Además, ya que las imágenes .SQC cuentan con la ventaja de aportar información en NSB y CCT de todo el hemisferio superior a diferencia de otros instrumentos utilizados en el área de estudio, fue posible definir distintas áreas de interés en el cielo, permitiendo comparar zonas virtualmente libres de CL con zonas contaminadas, estudiando sus cambios en NSB y CCT en función del tiempo.
- Valle del Sol, donde los impactos de la CL llegan hasta el zenit tanto en NSB como en CCT. En estos sitios se tienen los menores valores de NSB para el punto más oscuro del cielo, así como también los menores valores de NSB y CCT (a excepción del O. Cerro Mayu donde el CCT es mayor) al zenit de entre todos los observatorios; además al comparar con el modelo GAMBONS, en estos sitios se registra una mayor pérdida de NSB, superando la media mag/arcsec² de diferencia entre el modelo y la imagen real (caso del O. Cerro Mayu). Esto resulta en una pérdida de la visibilidad de fuentes naturales como la Vía Láctea y la luz zodiacal, característica intrínseca de cielos pristinos en la Cuarta Región. En términos de la visibilidad de las estrellas, si consideramos el NSB de un

9.1. Conclusiones 215

cielo pristino como 21.6 mag/arcsec², para el caso del O. Cerru Mayu se pierden alrededor de 2,000 estrellas al zenit (Figura 8.2), mientras que a altitudes de 10° sobre el horizonte este número asciende a 4,500 estrellas aproximadamente. Esto genera efectos perjudiciales en la astronomía cultural, dónde se observa toda la bóveda celeste, mientras que en la astronomía profesional la porción importante del cielo comienza a partir de 30° de altitud sobre el horizonte (Green et al. 2022).

- Los datos muestran que en la mayoría de los sitios de estudio la zonas del cielo más contaminadas coinciden con la dirección en la que se encuentran las ciudades de Coquimbo La Serena, aunque la contribución de estas dos ciudades en la mayoría de los casos no se puede cuantificar por si sola ya que se ve superpuesta por la contribución de otras ciudades/localidades, como lo es en el caso del O. Collowara donde queda superpuesta la contribución de Coquimbo La serena a la de Andacollo, o en el caso del O. Cruz del Sur donde la contribución de Coquimbo La Serena queda superpuesta a la de Combarbalá.
- Si bien la información del brillo cenital en algunos casos estaría indicando un cielo no contaminado, como en el caso del O. Mamalluca donde el valor promedio del NSB cenital fue de 21.79 mag/arcsec² (considerando que un cielo natural tiene un valor de NSB de 21.60 mag/arcsec²), esto no quiere decir que el sitio no sufra CL ya que al examinar el NSB al horizonte se encuentran valores por debajo de un cielo exento de CL, y además al examinar el mapa CCT para este caso en particular se tienen valores asociados a fuentes artificiales que generan impactos hasta altitudes cercanas al zenit (ver Sección 7.5). Por lo tanto, la información espacial y la información de CCT que entrega la cámara permite comprender de mejor manera los impactos de la CL sobre todo el hemisferio superior del lugar de estudio.
- En varios sitios de estudio se evidenciaron fluctuaciones temporales

principalmente en CCT, cuya causa se atribuye a la presencia de nubes sobre las fuentes artificales identificadas a partir de los datos meteorológicos de Zoom Earth, las cuales generan un efecto amplificador de CL. También se ha encontrado que fluctuaciones en NSB también pueden estar relacionadas a cambios en la iluminación de localidades cercanas, como lo que se vio en el caso del Observatorio Valle del Sol.

- Se han observado los impactos de las luces LED frías, que para el caso del O. Cerro Mayu pueden llevar a confundir valores de CCT naturales con valores CCT asociados a este tipo de fuentes artificiales. También han sido visibles los efectos en el O. Cruz del Sur pero en una medida mucho menor que el O. Cerro Mayu, donde la gran parte de la bóveda celeste presente un CCT asociado a valores naturales, pero que se ve claramente afectado por CL en cuanto a NSB se refiere. En esa misma línea se han hecho esfuerzos combinando actores públicos como privados con el fin reducir las emisiones de LED frías (que emiten en la parte azul del espectro) mediante recambios de luminarias¹ con el fin de cumplir con la Norma Lumínica que rige actualmente, y paralelamente instruir a la comunidad en el cuidado de los cielos nocturnos.
- Los resultados obtenidos en el Observatorio Collowara y el Observatorio Cruz del Sur fueron dados a conocer a las respectivas autoridades a cargo de los mismos, estableciendo una primera instancia de diálogo entre el Grupo de Investigación para el Cuidado del Cielo Nocturno ULS-OPCC-NOIRLab y la comunidad. Es por esto que se darán a conocer los resultados de los demás observatorios con el fin de seguir sumando actores con el objetivo de mitigar la degradación del cielo nocturno de la Región de Coquimbo.

Este levantamiendo de datos representan un punto de inicio para monitorizar y cuantificar la CL en los cielos de los Observatorios astro-turísticos de la Cuarta Región, que actualmente se ven afectados negativamente por la

¹miradiols.cl

CL, generando impactos negativos principalmente en la astronomía cultural y potencialmente en otros ámbitos como la biodiversidad, la salud humana y la astronomía profesional. Se enfatiza que tenemos la responsabilidad de proteger los cielos de la Región, ya que es un valioso recurso brindado por la naturaleza que si bien actualmente se ve amenazado por el inminente aumento de la CL, aún estamos a tiempo de tomar acciones concretas para controlar y mitigar este fenómeno.

9.2. Vinculación con el Medio

Una parte importante de esta tesis fue la de dar a conocer los resultados como Grupo de Investigación sobre el Cuidado del Cielo Nocturno ULS-OPCC-NOIRLab a los organismos encargados de tomar decisiones (Municipalidades, Ministerio del Medio Ambiente, staff a cargo de cada observatorio, entre otros), con el fin de proveer datos científicos para la toma de decisiones de manera informada. En primera instancia, el día 22 de Octubre del 2021 se presentaron los resultados del estudio en el Observatorio Collowara a la Municipalidad de Andacollo (ver Figura 9.1) mediante una reunión organizada de manera virtual.

Junto a la presentación de los resultados, el Grupo también se hizo partícipe de la actividad "Apagón por nuestros cielos" donde se realizaron actividades de difusión a la comunidad y además se realizaron mediciones de CL (Figura 9.2). Es de vital importancia comenzar a generar instancias de este tipo ya que por una parte se puede lograr sensibilizar a la población sobre los efectos que tiene la CL, y paralelamente se da la oportunidad de generar conocimiento científico, en este caso a través de mediciones del brillo del cielo nocturno con instrumentos especializados como lo es la SQC. En ese sentido tanto la Universidad como organismos públicos juegan un importante rol social a través del cuál poder realizar acciones que apunten a la protección de los cielos nocturnos, como también llevar a cabo esfuerzos por sensibilizar a la población acerca del fenómeno de CL.

FIGURA 9.1: Portada de la presentación de los resultados del Observarorio Collowara realizada el día 22 de Octubre del 2021.

FIGURA 9.2: Actividad "Apagón por nuestros cielos". Fuente: minciencia.gob.

Como acción concreta, dentro del marco de la actividad se hizo entrega del Informe Técnico-Científico sobre la Calidad de los Cielos del Observatorio Collowara a los organismos correspondientes (ver Figura 9.3).

De la misma forma, se organizó una reunión con la Municipalidad de

FIGURA 9.3: Portada del Informe Técnico-Científico sobre los resultados obtenidos a partir de las mediciones realizadas en el Observatorio Collowara, entregado el 24 de enero del 2022.

Combarbalá en la cual se presentaron los resultados obtenidos del trabajo en terreno en la campaña de observación del 09-10 de julio del 2021 en el Observatorio Cruz del Sur (véase Figura 9.4).

El día 12 de enero el Grupo partició en el evento "Preservación de los cielos oscuros de Chile" (Figura 9.5) donde se dió a conocer a la ciudadanía la Propuesta de Norma Constitucional cuyo objetivo es aumentar la importancia de la preservación del cielo de Chile a nivel constitucional, reconociéndo-lo como un componente fundamental del medio ambiente, cuya preservación mediante el control de la contaminación, entre otras, la lumínica es un deber del Estado². En ese sentido esta sería la primera propuesta en preservar los cielos nocturnos a nivel constitucional, convirtiendo a Chile en el primer país del mundo en tener una constitución de este estilo. Así, la Norma Constitucional establece:

²chileconvencion.cl

FIGURA 9.4: Portada de la presentación de los resultados del Observatorio Cruz del Sur realizada mediante videoconferencia el día 03 de Diciembre del 2021.

La Constitución asegura un cielo nocturno no contaminado que permita su observación, estudio, goce y usos tradicionales. Corresponderá al legislador regular las condiciones técnicas necesarias a fin de resguardar efectivamente el cielo nocturno.

Es deber del Estado y de la sociedad preservar y proteger la calidad astronómica de los cielos.

FIGURA 9.5: Evento "Preservación de los cielos oscuros de Chile" realizado el día 12 de enero en la Scuola Italiana, La Serena.

Al mismo tiempo en que se ha ejecutado este trabajo de tesis, a nivel legislativo se están llevando a cabo esfuerzos en el Ministerio del Medio Ambiente para poder controlar el fenómeno de manera efectiva. A través de la Revisión a la Norma Lumínica que estipula el Decreto Supremo 43³ se propuso extender la Norma Lumínica actual a todo el territorio nacional ya que la actualmente sólo se aplica a las Regiones de Antofagasta, Atacama y Coquimbo, esto ya que más del 30 % ha perdido la posibilidad de observar las estrellas debido a la CL y también están implicados efectos negativos sobre la biodiversidad y la salud humana⁴. Asimismo se establecieron "zonas de protección especial" en las cuales se restringen aún más la radiancia emitida por fuentes artificiales, y además se instauran restricciones horarias para el funcionamiento de carteles luminosos y recintos deportivos. Actualmente la Revisión a la Norma Lumínica fue sometida a consulta ciudadana el año 2021 y el día 10 de marzo del 2022 ingresó a "Toma de Razón" a la Contraloría General de la República⁵. Con la aplicación de esta nueva actualización de la Norma Lumínica se espera poder controlar de mejor manera el aumento progresivo de la CL.

³diariooficial.interior.gob.cl

⁴mma.gob.cl

⁵planesynormas.mma.gob.cl

9.3. Trabajos Futuros

Como continuación de esta investigación se abren varías líneas en las que el fenómeno de la CL se puede seguir estudiando. Las propuestas para las cuales pueden surgir investigaciones futuras ya sea a modo de cubrir las limitaciones que conllevó este trabajo de tesis, o explorar otras disciplinas afines son las que se listan a continuación:

- Monitorear dos o más lugares de estudio constantemente y al mismo tiempo en un periodo prolongado para investigar los cambios estacionales o anuales en la calidad de los cielos nocturnos, ya que en este trabajo el sitio de estudio fue variando a lo largo de los meses por lo que no fue posible comparar en detalle los sitios entre sí.
- Elegir localizaciones geográficas estratégicas (no necesariamente puntos de relevancia astro-turística), a modo de cuantificar la contribución de la ciudad de Coquimbo La Serena per se, ya que en varios sitios la contribución de dichas ciudades estaba superpuesta con otras localidades/ciudades.
- Estudiar la CL desde un punto de vista ecológico, en particular, estudiar los impactos de la CL sobre los animales nocturnos (Jechow et al. 2019a) cambiando la metodología de obtener imágenes All-Sky, a imágenes verticales de la esfera completa, ya que este último tipo de imágenes brinda una mayor información sobre lo que hay bajo el horizonte.
- Conjugar las mediciones realizadas por la SQC con el espectrógrafo portátil que se añadirá a la instrumentación con la que cuenta la Universidad. Con esta herramienta se podrán obtener espectro calibrados de porciones de la esfera celeste (~30°), contando con una caracterización espectral tanto de contribuciones naturales como artificiales al brillo del cielo nocturno.
- Expandir el estudio a otras regiones de Chile, ya que actualmente no existen datos públicos con los cuales contrastar los resultados obtenidos

con la SQC. Para esta tarea la Universidad puede jugar un importante rol ya que también es posible hacer partícipes a estudiantes de Licenciatura en Astronomía, puesto que el manejo del instrumento es accesible también para personas que no estén estrechamente relacionadas al tema. Al involucrar a estudiantes desde una temprana etapa de su formación hará que desarrollen una mayor cantidad de herramientas para su futuro profesional, así como también la Universidad contaría con una mayor capacidad para dar a conocer los hallazgos encontrados en este tipo de proyectos a la comunidad.

- Aceituno, Jesús et al. (2011). «An all-sky transmission monitor: ASTMON». En: *Publications of the Astronomical Society of the Pacific* 123.907, pág. 1076.
- Ashdown, Ian (ene. de 1996). «Photometry and Radiometry: A Tour Guide for Computer Graphics Enthusiasts». En: *LC, FIS*.
- Aubé, M et al. (2016). «The spectral amplification effect of clouds to the night sky radiance in Madrid». En: *Journal of Quantitative Spectroscopy and Radiative Transfer* 181, págs. 11-23.
- Aubé, Martin (2007). «Light pollution modeling and detection in a heterogeneous environment». En: *Proceedings of Starlight 2007 conference, La Palma, Spain*.
- Bará, Salvador (2016). «Anthropogenic disruption of the night sky darkness in urban and rural areas». En: *Royal Society Open Science* 3.10, pág. 160541.
- Barros, Rodrigo et al. (2019). «Breeding phenology, distribution and conservation status of Markham's Storm-Petrel Oceanodroma markhami in the Atacama Desert». En: *Ardea* 107.1, págs. 75-84.
- Bertolo, Andrea et al. (2019). «Measurements of Night Sky Brightness in the Veneto Region of Italy: Sky Quality Meter Network Results and Differential Photometry by Digital Single Lens Reflex». En: *Journal of Imaging* 5.5. ISSN: 2313-433X. DOI: 10.3390/jimaging5050056.

Blum, Jeffrey R et al. (2012). «Smartphone sensor reliability for augmented reality applications». En: *International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services.* Springer, págs. 127-138.

- Cho, YongMin et al. (2015). «Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment». En: *Chronobiology International* 32.9. PMID: 26375320, págs. 1294-1310. DOI: 10.3109/07420528.2015.1073158.
- Chowdhury, Asim (ene. de 2014). *Principles of Colour and Appearance Measurement*, págs. 1-311.
- Cinzano, Pierantonio (2005). «Night sky photometry with sky quality meter». En: *ISTIL Int. Rep* 9.1.
- Cinzano, Pierantonio et al. (2001). «The first world atlas of the artificial night sky brightness». En: *Monthly Notices of the Royal Astronomical Society* 328.3, págs. 689-707.
- Driver, Simon P. et al. (Ago. de 2016). «MEASUREMENTS OF EXTRAGA-LACTIC BACKGROUND LIGHT FROM THE FAR UV TO THE FAR IR FROM DEEP GROUND- AND SPACE-BASED GALAXY COUNTS». En: *The Astrophysical Journal* 827.2, pág. 108. DOI: 10.3847/0004-637x/827/2/108.
- Eloholma, Marjukka et al. (2006). «New model for mesopic photometry and its application to road lighting». En: *Leukos* 2.4, págs. 263-293.
- Elvidge, Christopher D et al. (2001). «Night-time lights of the world: 1994–1995». En: *ISPRS Journal of Photogrammetry and Remote Sensing* 56.2, págs. 81-99.
- Falchi, Fabio et al. (2011). «Limiting the impact of light pollution on human health, environment and stellar visibility». En: *Journal of environmental management* 92.10, págs. 2714-2722.

Falchi, Fabio et al. (2016). «The new world atlas of artificial night sky brightness». En: *Science Advances* 2.6, e1600377. DOI: 10.1126/sciadv.1600377.

- Gallaway, Terrel (2010). «On light pollution, passive pleasures, and the instrumental value of beauty». En: *Journal of Economic Issues* 44.1, págs. 71-88. DOI: https://doi.org/10.2753/JEI0021-3624440104.
- Green, Richard F et al. (2022). «The growing threat of light pollution to ground-based observatories». En: *The Astronomy and Astrophysics Review* 30.1, págs. 1-49.
- Hänel, Andreas et al. (2018). «Measuring night sky brightness: methods and challenges». En: *Journal of Quantitative Spectroscopy and Radiative Transfer* 205, págs. 278-290.
- Hinds, William C (1999). *Aerosol technology: properties, behavior, and measurement of airborne particles.* John Wiley & Sons.
- Hölker, Franz et al. (Oct. de 2010). «Light Pollution as a Biodiversity Threat». En: *Trends in ecology & evolution* 25, págs. 681-2. DOI: 10.1016/j.tree. 2010.09.007.
- Isobe, SI et al. (2000). «Light pollution and its energy loss». En: *Astrophysics and Space Science* 273.1, págs. 289-294.
- Jechow, Andreas et al. (2017). «Imaging and mapping the impact of clouds on skyglow with all-sky photometry». En: *Scientific Reports* 7.1, págs. 1-10.
- Jechow, Andreas et al. (2018). «Tracking the dynamics of skyglow with differential photometry using a digital camera with fisheye lens». En: *Journal of Quantitative Spectroscopy and Radiative Transfer* 209, págs. 212-223.
- Jechow, Andreas et al. (2019a). «Beyond all-sky: assessing ecological light pollution using multi-spectral full-sphere fisheye lens imaging». En: *Journal of Imaging* 5.4, pág. 46.

Jechow, Andreas et al. (2019b). «Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas». En: *Scientific reports* 9.1, págs. 1-14.

- Jechow, Andreas et al. (2020). «Mapping the brightness and color of urban to rural skyglow with all-sky photometry». En: *Journal of Quantitative Spectroscopy and Radiative Transfer* 250, pág. 106988. ISSN: 0022-4073. DOI: https://doi.org/10.1016/j.jqsrt.2020.106988.
- Johnson, Harold L et al. (1953). «Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas». En: *The Astrophysical Journal* 117, pág. 313.
- Judd, Deane B (1951). «Report of US secretariat committee on colorimetry and artificial daylight». En: *Proceedings of the 12th Session of the CIE*, 1951 1, pág. 11.
- Kocifaj, Miroslav et al. (2015). «Retrieval of Garstang's emission function from all-sky camera images». En: *Monthly Notices of the Royal Astronomical Society* 453.1, págs. 819-827.
- Kolláth, Zoltán (2010). «Measuring and modelling light pollution at the Zselic Starry Sky Park». En: *Journal of Physics: Conference Series*. Vol. 218. 1. IOP Publishing, pág. 012001.
- Krisciunas, Kevin (oct. de 1997). «Optical Night-Sky Brightness at Mauna Kea over the Course of a Complete Sunspot Cycle». En: *Publications of the Astronomical Society of the Pacific* 109, pág. 1181. DOI: 10.1086/133993.
- Krisciunas, Kevin et al. (Jun. de 2007). «Optical Sky Brightness at Cerro Tololo Inter-American Observatory from 1992 to 2006». En: *Publications of the Astronomical Society of the Pacific* 119.856, págs. 687-696. DOI: 10.1086/519564.

Krisciunas, Kevin et al. (2010). «Light Pollution At High Zenith Angles, As Measured at Cerro Tololo Inter-American Observatory1». En: *Publications of the Astronomical Society of the Pacific* 122.889, pág. 373.

- Krisciunas, Kevin et al. (2017). «The Carnegie Supernova Project. I. Third Photometry Data Release of Low-redshift Type Ia Supernovae and Other White Dwarf Explosions». En: *The Astronomical Journal* 154.5, pág. 211.
- Kyba, Christopher C. M. (feb. de 2018). «Is light pollution getting better or worse?» En: *Nature Astronomy* 2, págs. 267-269. DOI: 10.1038/s41550-018-0402-7.
- Kyba, Christopher C. M. et al. (2011). «Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems». En: *PloS one* 6.3, e17307.
- Kyba, Christopher C. M. et al. (2015). «Worldwide variations in artificial sky-glow». En: *Scientific reports* 5.1, págs. 1-7.
- Kyba, Christopher C. M. et al. (2017). «Artificially lit surface of Earth at night increasing in radiance and extent». En: *Science Advances* 3.11, e1701528.

 DOI: 10.1126/sciadv.1701528.
- Kyba, Christopher C. M. et al. (2021). «Direct measurement of the contribution of street lighting to satellite observations of nighttime light emissions from urban areas». En: *Lighting Research & Technology* 53.3, págs. 189-211. DOI: 10.1177/1477153520958463.
- Leinert, Ch. et al. (Jun. de 1998). «The 1997 reference of diffuse night sky brightness». En: *AAPS* 127, págs. 1-99. DOI: 10.1051/aas:1998105.
- Luginbuhl, Christian B et al. (2014). «The impact of light source spectral power distribution on sky glow». En: *Journal of Quantitative Spectroscopy and Radiative Transfer* 139, págs. 21-26.

Lukac, Rastislav et al. (2005). «Color image zooming on the Bayer pattern». En: *IEEE Transactions on Circuits and Systems for Video Technology* 15.11, págs. 1475-1492.

- Marchant, Paul (mayo de 2004). «A Demonstration That the Claim That Brighter Lighting Reduces Crime Is Unfounded». En: *British Journal of Criminology* 44. DOI: 10.1093/bjc/azh009.
- (ene. de 2010). «What is the contribution of street lighting to keeping us safe? An investigation into a policy». En: *Radical Statistics* 102.
- Martínez-Ledesma, Miguel et al. (Sep. de 2019). «Spectral and Zonal Restriction Justification Review Process of DS043/2012 MMA (Ministry of Environment)». En: DOI: 10.13140/RG.2.2.11949.31206.
- Masana, E. et al. (Jul. de 2020). «A Gaia map of the natural sky brightness». En: XIV.0 Scientific Meeting (virtual) of the Spanish Astronomical Society, 234, pág. 234.
- Mathis, J. S. et al. (Nov. de 1983). «Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds.» En: *Astron. Astrph.* 500, págs. 259-276.
- Meravi, Neelima et al. (2020). «Effect street light pollution on the photosynthetic efficiency of different plants». En: *Biological Rhythm Research* 51.1, págs. 67-75. DOI: 10.1080/09291016.2018.1518206.
- Miller, Steven D et al. (2013). «Illuminating the capabilities of the suomi national polar-orbiting partnership (NPP) visible infrared imaging radiometer suite (VIIRS) day/night band». En: *Remote Sensing* 5.12, págs. 6717-6766.
- Mizon, Bob (2012). *Light pollution: responses and remedies*. Springer Science & Business Media.

Narisada, Kohei et al. (2004). *Light pollution handbook*. Vol. 322. Springer Science & Business Media.

- Nave, R. (2017). Blue Sky and Rayleigh Scattering. http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html. Consultado: Noviembre, 2021.
- Noll, S. et al. (Jul. de 2012). «An atmospheric radiation model for Cerro Paranal. I. The optical spectral range». En: *Astron. Astrph.* 543, A92, A92. DOI: 10.1051/0004-6361/201219040.
- Novakova, Lucie et al. (2017). «Assessment of the precision of smart phones and tablets for measurement of planar orientations: A case study». En: *Journal of Structural Geology* 97, págs. 93-103.
- Paksarian, Diana et al. (Dic. de 2020). «Association of Outdoor Artificial Light at Night With Mental Disorders and Sleep Patterns Among US Adolescents». En: *JAMA Psychiatry* 77.12, págs. 1266-1275. ISSN: 2168-622X. DOI: 10.1001/jamapsychiatry.2020.1935.
- Patat, F. (2008). «The dancing sky: 6 years of night-sky observations at Cerro Paranal*». En: *A&A* 481.2, págs. 575-591. DOI: 10.1051/0004-6361: 20079279.
- Rayleigh, Lord (abr. de 1899). XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. DOI: 10.1080/14786449908621276.
- Rea, Mark S et al. (2004). «A proposed unified system of photometry». En: *Lighting Research & Technology* 36.2, págs. 85-109.
- Ribas, Salvador J et al. (2016). «How Clouds are Amplifying (or not) the Effects of ALAN». En: *International Journal of Sustainable Lighting* 18, págs. 32-39.

Roach, F et al. (1973). *The light of the night sky*. Vol. 4. Springer Science & Business Media. DOI: https://doi.org/10.1007/978-94-010-2553-9.

- Sanchez de Miguel, Alejandro (jun. de 2015). «Spatial, Temporal and Spectral Variation of Light Pollution and its Sources: Methodology and Results». Tesis doct. DOI: 10.5281/zenodo.1289933.
- Sánchez de Miguel, A et al. (2017). «Sky Quality Meter measurements in a colour-changing world». En: *Monthly Notices of the Royal Astronomical Society* 467.3, págs. 2966-2979.
- Ściężor, Tomasz (2020). «The impact of clouds on the brightness of the night sky». En: *Journal of Quantitative Spectroscopy and Radiative Transfer* 247, pág. 106962. ISSN: 0022-4073. DOI: https://doi.org/10.1016/j.jqsrt.2020.106962.
- Silva, B. (2019). Estrellas desde el San Cristóbal: La singular historia de un observatorio pionero en Chile (1903-1995). Editorial Catalonia. ISBN: 9789563247312.
- (ene. de 2020). «Chile: A Center of Global Astronomy, 1850-2019». En: DOI: 10.1093/acrefore/9780199366439.013.878.
- Silva, R. et al. (2020). «Evaluación del impacto de la contaminación lumínica sobre las aves marinas en Chile: Diagnóstico y propuestas». En: *Ornitología Neotropical* 31.1, págs. 13-24.
- Singhal, Rajesh et al. (Dic. de 2018). «Ecophysiological Responses of Artificial Night Light Pollution in Plants». En: *Russian Journal of Plant Physiology* 66. DOI: 10.1134/S1021443719020134.
- Smith, Thomas et al. (1931). «The CIE colorimetric standards and their use». En: *Transactions of the optical society* 33.3, pág. 73.

Stone, Taylor (2017). «Light Pollution: A Case Study in Framing an Environmental Problem». En: *Ethics, Policy & Environment* 20.3, págs. 279-293. DOI: 10.1080/21550085.2017.1374010.

- Takahashi, H. et al. (1984). «Tidal and solar cycle effects on the OI 5577 Å, NaD and OH(8,3) airglow emissions observed at 23°S». En: *Planetary and Space Science* 32.7, págs. 897-902. ISSN: 0032-0633. DOI: https://doi.org/10.1016/0032-0633(84)90013-8.
- Teare, S. W. (oct. de 2000). «The night sky brightness at Mount Wilson Observatory». En: *The Observatory* 120, págs. 313-317.
- Tompson, Lisa et al. (Jul. de 2015). «The effect of reduced street lighting on road casualties and crime in England and Wales: Controlled interrupted time series analysis». En: *Journal of Epidemiology & Community Health*. DOI: 10.1136/jech-2015-206012.
- Tsao, Jeffrey Y. et al. (2010). «The World's Appetite for Light: Empirical Data and Trends Spanning Three Centuries and Six Continents». En: *LEUKOS* 6.4, págs. 259-281. DOI: 10.1582/LEUKOS.2010.06.04001.
- Uchima-Tamayo, Juan Pablo (jul. de 2021). «Caracterizacion de los Cielos de la Región Estrella: Análisis cuantitativo del brillo superficial y extinción atmosférica desde sitios de interés astronomico, naturalístico y turístico.» Master's thesis.
- Valencia, Juan-Sebastián Botero et al. (2013). «Calibration method for Correlated Color Temperature (CCT) measurement using RGB color sensors».
 En: Symposium of Signals, Images and Artificial Vision-2013: STSIVA-2013.
 IEEE, págs. 1-6.
- Walker, Merle F (1977). «The effects of urban lighting on the brightness of the night sky.» En: *Publications of the Astronomical Society of the Pacific* 89.529, pág. 405.

Welsh, Brandon C. et al. (2008). «Effects of Improved Street Lighting on Crime». En: *Campbell Systematic Reviews* 4.1, págs. 1-51. DOI: https://doi.org/10.4073/csr.2008.13.

Zamorano, Jaime et al. (2016). «Stars4all night sky brightness photometer». En: *International Journal of Sustainable Lighting* 18, págs. 49-54.

Zumtobel (abr. de 2018). The Lighting Handbook.