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TRIBUNAL CALIFICADOR

El tribunal de tesis, conformado por:

PRESIDENTE :

MIEMBROS DEL TRIBUNAL: *

*

*

ACUERDAN OTORGARLE LA CALIFICACIÓN DE:
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Además, agradezco a mi suegrita por abrirme la puerta cuando me quedo

afuera en las mañanas xD. Gracias al profe Nilo por ayudarme a sacar adelante

la tesis, aun le debo una chela. Ana, gracias por mostrarme lo weon que soy en
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rios y pruebas codo a codo en la licenciatura. No lo hubiese logrado sin ti men, y

fue mil veces mas dif́ıcil sin ti durante esta etapa :L .

Agradezco a mi familia por el apoyo constante que me da aliento cada vez

que olvido respirar. Finalmente, una dedicación especial para Pamela. Ya me

es costumbre tenerte a mi lado para avanzar por sobre cada obstáculo que se
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Resumen

El estudio de los cúmulos de galaxias es escencial para nuestro entendimiento

de la evolución de galaxias, aśı como también para la evolución del Universo, se

encuentran en el máximo del campo de densidad de materia (materia oscura) y

aśı, acretan grupos de galaxias y otro cúmulos de la red cósmica mientras evolu-

cionan. Esta constante acreción implica que los cúmulos de galaxias, raramente se

encuentran en equilibrio y usualmente llevan a cabo procesos de fusión a lo largo

de su historia, algunos de estas fusiones se encuentran entre los procesos más en-

ergéticos del Universo y aśı, estos eventos proveen con condiciones extremas para

estudiar la evolución de galaxias, f́ısica de part́ıculas y cosmoloǵıa. Los cúmulos

en fusión juegan un papel importante en la aceleración de rayos cósmicos y la

generación de rayos gamma, y pueden llegar a ser usados para acotar la sección

eficaz de la part́ıcula de materia oscura cuando interactua con śı misma. Desde un

punto de vista cosmológico, los cúmulos en fusión nos permiten probar escenarios

de materia oscura fŕıa (ΛCDM) y abren una ventana al universo distante gracias

a su eficiencia magnificante como lentes gravitacionales.

La clasificación de sistemas no relajados se puede hacer usando diferentes

observables, por ejemplo, al usar la morfoloǵıa en la emisión de rayos X, usando

la emisión en radio, observando la forma de la distribución de las galaxias en

los cúmulos; al combinar observaciones en diferentes longitudes de onda, como

el desfase entre la posición del máximo de emisión en rayos X con la galaxia

más brillante del cúmulo (BCG) o usando espectroscoṕıa para medir la forma del

perfil de velocidades. Este último método proporciona la distribución de galaxias



en la ĺınea de visión, permitiendonos crear escenarios tridimensionales, además de

caracterizar la fusión en śı, sumado a la clasificación del estado dinámico.

Las grandes muestras de cúmulos de galaxias son identificadas usando surveys

en el óptico, rayos X, y con el efecto de Sunyaev-Zeldovich (SZ). Actualmente

existen grandes muestras de SZ de cúmulos de galaxias disponibles, tanto en el

Planck telescope, Atacama cosmology telescope y el South Pole Telescope (SPT),

sumando un total aproximado de 2,000 cúmulos de galaxias masivos. Se espera

que el telescopio espacial de rayos X eROSITA pueda aumentar este número a unos

100,000 grupos y cúmulos de galaxias, otorgando una gran muestra de cúmulos

en interacción.

En esta tesis, como nuestro trabajo introductorio a los surveys venideros, se

toman 15 GCs in un rango de redshift 0.3< z <0.65 provinientes del SPT-SZ

2,500 deg2 survey donde 14 de ellos, seleccionados por su gran desfase entre la

BCG y el centroide/máximo de la emisión de rayos X, son candidatos a cúmulos

perturbados. Para estos cúmulos, que representan los cúmulos más masivos en el

universo, se usan datos espectroscopicos de Gemini/GMOS para estimar el red-

shift de los cúmulos, sus masas dinámicas y confirmar la membreśıa de candidatos

a BCG. Se analiza la distribución de las galaxias de los cúmulos en la linea de

vision y en el plano proyectado para confirmar el estado dinámico de los cúmulos.

Nuestro set de tests consiste en test estad́ısticos que prueban la distribución en

1, 2, y 3 dimensiones. Al tomar un corte en velocidad de ±3,000 km s−1 para

seleccionar miembros del cúmulo, se confirma la membreśıa 11 BCGs indicando

un nivel de contaminación del 27%. Se encuentra que 7 cúmulos presentan evi-

dencia de perturbación por almenos uno de los test estad́ısticos. Particularmente,

el acercamiento tridimensional con DS test demostró ser inadecuado para las sep-

araciones de subestructuras en velocidad en nuestra muestra. Más aún, haciendo

simulaciones numericas se encuentra que este alcanza niveles de eficiencia sobre-

salientes cuando se prueban fusiones que no esten superpuestas en linea de visión

ni en el plano del cielo. En estos casos, DS test muestra bajos niveles de efi-



ciencia para detectar subestructura que son aún más bajos para fusiones en el

plano del cielo. Esta simulación tambien muestra que DS test funciona mejor en

fusiones con cúmulos de escalas diferentes a cuando se tienen cúmulos de escalas

similares. Además, recolectamos una muestra grande de 138 GCs y corremos los

tests estad́ısticos encontrando que un 36% de esta muestra presenta evidencia de

perturbación y un 54% no muestra ningún indicio de perturbación.



Summary

The study of galaxy clusters (GC) is central to our understanding of galaxy

evolution as well as the evolution of the Universe. They are located at the peaks of

the (dark) matter density field, and as such they accrete galaxy groups and other

clusters from the cosmic web as they evolve. This constant accretion implies that

GC are rarely in equilibrium and they often undergo mergers during their history.

Some of those merging are among the most energetic events in the Universe and as

such they provide extreme conditions to study galaxy evolution, particle physics,

and cosmology. Merging clusters play a role in cosmic ray acceleration and gamma

ray generation, and they can be used to narrow the cross section of the dark

matter particle when it interacts with itself. From a cosmological perspective,

merging clusters allow us to test a cold dark matter scenario (ΛCDM) and they

open a window to the distant universe thanks to their magnifying efficiency as

gravitational lenses.

The classification of non-relaxed systems can be done using different proxies

e.g. by using the morphology of the X-ray emission; using the radio emission;

looking at the shape of the distribution of galaxies in clusters, by combining ob-

servations at different wavelengths such as the phase shift between X-ray peak

with the Brightest cluster’s galaxy (BCG); or using spectroscopy to measure the

shape of the velocity dispersion. This last method provides line-of-sight distribu-

tions allowing us to build three dimensional scenarios, furthermore characterizing

the merger itself in addition to classifying the dynamical state.

Large samples of galaxy clusters are identified using surveys in optical, X-rays,



and Sunyaev-Zeldovich (SZ) effect. Actually there are large SZ samples of galaxy

clusters available such as the Planck telescope, Atacama cosmology telescope,

and the South Pole Telescope (SPT) accounting for approximately 2,000 massive

galaxy clusters in total. Expectations for the X-ray space telescope eROSITA is to

raise this number to 100,000 galaxy groups and clusters providing a large sample

to detect a large amount of interacting clusters.

In this thesis, as our pilot work to face the upcoming surveys, we use 15

GCs in the redshift range 0.3< z <0.65 from the SPT-SZ 2,500 deg2 survey

where 14 of them were selected by their large offset between the BCG and the

X-ray peak/centroid as disturbed cluster candidates. For these clusters, which

represent the most massive GCs in the universe, we use spectroscopic data from

the Gemini/GMOS spectrograph to estimate cluster redshifts, dynamical masses,

and confirm the membership of BCG candidates. We analyze the distribution

of cluster galaxies in line of sight and projected space to confirm the dynamical

state of the clusters. Our battery of tests consist on statistical tests that probes

the distribution on 1, 2, and 3 dimensions. By taking a velocity cut level of

±3,000 km s−1 to select cluster members we confirm the membership of 11 BCGs

indicating a contamination level of 27%. We find that 7 clusters present evidence

of perturbation by at least one of the statistical tests. We find that 4 clusters

show no evidence of perturbation through multiple velocity cut levels employed.

Particularly, our 3D approach with DS test demonstrated to be unsuitable for the

velocity separations of substructures in our sample. Furthermore, by performing

numerical simulations we find that it reach outstanding confidence levels when

testing mergers not superimposed in line of sight or sky plane. In these cases,

DS test show low efficiency levels to detect substructure, and even lower levels

for mergers in the plane of the sky. This simulation also show that DS test work

better in mergers with clusters of different scales than in those with clusters with

similar scales. In addition, we collect a large sample of 138 GCs and run the

statistical tests to find that 36% of this sample show evidence of perturbations



and a 54% of the clusters show no deviations from dynamical equilibrium.



Contents

1 Introduction 1

1.1 Galaxy clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Interaction of galaxy clusters . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Cluster sample and thesis goals . . . . . . . . . . . . . . . . . . . . . . 8

2 Objectives 10

3 Data 11

3.1 Selection of the Merging cluster candidates and the Galaxies for spectroscopy 11

3.2 Mask design and Observations . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Spectra treatment before redshift measurement . . . . . . . . . . 18

3.4.2 Redshift measurements using FXCOR . . . . . . . . . . . . . . 19

3.4.3 Automated redshift estimation pipeline . . . . . . . . . . . . . . 22

3.5 Data from literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Goodman Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Analysis 29

4.1 Cluster redshift, membership selection, and dynamical mass . . . . . . . . 29

4.1.1 Cluster redshift and velocity dispersion . . . . . . . . . . . . . . 29

4.1.2 Membership selection . . . . . . . . . . . . . . . . . . . . . . 30

4.1.3 Dynamical mass . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Dynamical state indicators . . . . . . . . . . . . . . . . . . . . . . . . 31



CONTENTS

4.2.1 Anderson-Darling test . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Kolmogorov-Smirnov test . . . . . . . . . . . . . . . . . . . . . 33

4.2.3 Gaussian Mixture Modelling . . . . . . . . . . . . . . . . . . . 34

4.2.4 Dressler-Shectman test . . . . . . . . . . . . . . . . . . . . . . 35

5 Results 37

5.1 Cluster properties and BCG membership . . . . . . . . . . . . . . . . . 37

5.2 Dynamical state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Discussion and conclusions 46

6.1 Dynamical state in the LoS: AD and KS test . . . . . . . . . . . . . . . 46

6.2 Dynamical state in the spatial direction: GMM2D . . . . . . . . . . . . . 47

6.3 3D approach of the dynamical state: DS test . . . . . . . . . . . . . . . 49

6.4 Simulating 3D mergers . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 Dynamical state of 138 galaxy clusters . . . . . . . . . . . . . . . . . . 53

6.5.1 Relaxed sample . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Future work 59

A Pipeline and scripts 81

A.1 Downloading DES images and catalogs . . . . . . . . . . . . . . . . . . 81

A.1.1 Donwloading SPT spectroscopic catalogs . . . . . . . . . . . . . 85

A.2 RCS align with saods9 . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.3 Data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.3.1 Identifying and correcting first end over-scaled spectra . . . . . . . 86

A.4 Catalogs and BCG matching . . . . . . . . . . . . . . . . . . . . . . . 89

A.5 Cluster redshifts and dynamical masses . . . . . . . . . . . . . . . . . . 91

A.6 Dynamical state indicators . . . . . . . . . . . . . . . . . . . . . . . . 95

A.6.1 AD and KS test . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.6.2 Gaussian Mixture Modelling . . . . . . . . . . . . . . . . . . . 96

A.6.3 DS test and Monte Carlo method . . . . . . . . . . . . . . . . . 98



A.7 Sample size statistics for 1D dynamical tests . . . . . . . . . . . . . . . . 100

A.8 Statistics for 2D dynamical tests . . . . . . . . . . . . . . . . . . . . . 104



List of Figures

1.1 Figure from Harvey et al. (2014) illustrating all three components of an infalling

structure to the main cluster. The notation is G for gas, D for DM, I for the

intersection point closest to the DM in the direction towards the gas, and S

(‘stars’) for galaxies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Ram pressure stripping of gas from a galaxy in ESO 137-001 in the Norma

cluster. Image taken with the HST. . . . . . . . . . . . . . . . . . . . . 6

3.1 Top panel: Projected density contours (from the RCS galaxies) overlaid on the

DES i-band images for the unrelaxed cluster SPT-CLJ0522-5026 at z = 0.52.

Levels begin at 100 galaxies Mpc−2 and increase linearly with increments of

50 galaxies Mpc−2. The field-of-view of the image is 7.7 × 7.7 arcmin2 (∼

2.9 × 2.9 Mpc2 at the redshift of SPT-CLJ0522-5026). Note the two clear

separate structures in SPT-CLJ0522-5026 (separated by ∼ 0.8 Mpc). Other

over densities are detected and possible connected to the cluster. The red

square shows the BCG location. The large blue circle indicates the radius

R200. Bottom panel: Color-magnitude diagram for SPT-CLJ0522-5026 with

the total (black dots), blue (blue dots), and red-sequence (red dots) galaxies

within R200. The lines correspond to the best fit of the model ± 0.22 mags. . 13

3.2 Obj ID: 252454243, slit number 32, second mask for SPT-CLJ0144-4807. 1D

spectra shown using splot and 2D spectra displayed with saods9. Highlights

indicate some visually identified absorption lines. . . . . . . . . . . . . . 17

3.3 lineclean interactive panel example. Obj ID: 158525328, slit number 30, first

mask for SPT-CLJ2344-4224. The figure shows the flux calibrated 1D spectra.

The central curve is the order 13 Chebyshev fit to the continuum. . . . . . . 18



LIST OF FIGURES

3.4 An example of a star and a low-signal spectra. . . . . . . . . . . . . . . . 19

3.5 Spectra of sources from different clusters denoting the presence of the OH line
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Chapter 1

Introduction

1.1 Galaxy clusters

The impressive success of Hubble’s test in the first half of the XX century

(Hubble, 1926) opened the gates to map the large scale structure of the Universe

(LSS). A cosmic scenario of hierarchical formation in which stars are organized

into galaxies, which in turn form galaxy groups, galaxy clusters, superclusters,

sheets, walls, and filaments which are separated by immense voids, creating a

vast foam-like structure (Carroll and Ostlie, 2017). This revealed the expanding

nature of the Universe which is described by the Hubble constant, H0 (Hubble,

1929). This expansion causes that distant galaxies display their electromagnetic

spectrum in redder (larger) wavelength regions. This shift is known as redshift, z,

and it is related to the scale factor at a given time t as

a(t) =
1

1 + z
.

Several galaxy redshift surveys have been carried out, notable examples includes

the 2dF Galaxy Redshift Survey, the Sloan Digital Sky Survey (SDSS-II), and

the Galaxy And Mass Assembly (GAMA) survey. Studies using these redshift

catalogs (e.g., Davis et al., 1982; York et al., 2000; Pimbblet et al., 2004; Porter

and Raychaudhury, 2005) indicate the presence of filaments at scales >10 h−1

Mpc (Coil, 2013) where their elemental component, from which the filamental

structure is drawn, are galaxy clusters.

The study of galaxy clusters (GCs) is central to our understanding of galaxy

evolution as well as the evolution of the Universe. Their formation corresponds

1



1 Introduction 2

to the collapse of the largest gravitationally bound overdensities in the initial

density field (Kravtsov and Borgani, 2012). GCs can be roughly 100 times the

diameter and 1,000 times the mass of the largest galaxies (Allen et al., 2011).

With diameters >1.5 h−1Mpc and masses from 3×1014 to a few 1015 M�, they

can hold as few as 50 or more than 10,000 member galaxies (Schneider, P., 2015).

GC’s three main components are galaxies, which includes stars, gas, and dust in

member galaxies; the intra-cluster medium (ICM), that consists mainly of ionized

hydrogen and helium, and accounts for most of the baryonic material in GCs; and

the Dark Matter (DM) halo. Baryonic matter account for ∼20% of the total GC

matter while the other 80% is DM. Meanwhile, This 20% of baryonic matter is

3% stars and the rest correspond to ICM and the gas/dust component in galaxies

which are in constant feedback (Schneider, P., 2015; Bykov et al., 2015).

The ICM consists mainly on hot gas at temperatures between 107 to 108 K

that permeates the GC. In this range of temperatures, the gas exists as a hot

plasma in which electrons passing through the electric field of near ions are de-

celerated. This in turn cause a loss of kinetic energy in the electron, which is

converted into radiation, and also produce a loss of energy in the plasma, causing

the overall temperatures of the gas to cool down. This effect is known as thermal

bremsstrahlung and is the reason on why the ICM has X-ray emission.

In GCs, there is often found in the bottom of the potential well a single massive

central galaxy, which is typically the Brightest Cluster Galaxy (BCG). BCGs are

the most massive galaxies in the universe. They are generally elliptical galaxies

which lie close to the geometric and kinematical center of their host galaxy cluster,

hence at the bottom of the cluster potential well (Lin and Mohr, 2004), and

generally coincident with the X-ray emission center (Mann and Ebeling, 2012a).

They have unusually extended envelopes while keeping modest stellar velocity

dispersions (i.e. steeper L−σ relation than for other bright cluster galaxies, Lauer

et al., 2014) and their typical stellar masses are M∗ ∼2 × 1011 h−2 M� (Schneider,

P., 2015). Also, the mass of their central black hole could be tightly correlated with

the mass of their galactic bulge (Graham, 2016), but this relation is apparently

steeper for BCGs too (Desroches et al., 2007).

GCs exhibit an appropriate environment for the study of gravitational lenses;

Light from objects that are behind GCs is distorted due to the deformation of

the space-time curvature product of the large mass of the GC. These distortions

are part of the predictions of Albert Einstein’s general theory of relativity (e.g.,
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Einstein, 1936). Gravitational lenses can work as natural telescopes to magnify

galaxies at high redshifts (Barnacka, 2018) or to recover the GC’s mass distribu-

tion (Hoekstra et al., 2013). This technique has the advantage of being able to

track the total GC mass, including the DM halo which is its major component

(Clowe et al., 2004, 2006; Ma et al., 2010; Gonzalez et al., 2015).

Following a hierarchical formation scenario with a cold dark matter cosmology

(ΛCDM), GCs evolve through a sequence of mergers and accretion of smaller

systems (Kravtsov and Borgani, 2012). In fact, minor merger events are the

dominant growth mechanism for large-scale structures in the Universe; most GCs

accrete substructure of around ∼10% of their total mass at any given time (e.g.,

Powell et al., 2009). However, when GC’s components are in dynamical and

hydrostatic equilibrium we say that the cluster is virialized (that follows the Virial

theorem, e.g.; Xu et al., 2000), and enters into a relaxation state. Nevertheless,

as mentioned above, this state of dynamical equilibrium can be perturbed due to

accretion of other small systems or a merger with another system of similar mass.

1.2 Interaction of galaxy clusters

Massive GC mergers are the most energetic events since the Big Bang with

energies ranging up to ∼1064 ergs, where ∼10% of the energy is dissipated into

the ICM through shock waves, compression, and turbulence (Sarazin, 2002, 2004).

These characteristics provide access to an environment with extreme conditions

which allows for the study of a range of phenomena, from particle physics, as they

can be used to constrain the dark matter particle self-interaction cross-section

(e.g., Harvey et al., 2015; Wittman et al., 2017; Fischer et al., 2021); to cosmology,

where they can provide constraints to dark energy models (e.g., Thompson et al.,

2015; Bouillot et al., 2015). Signals of cluster-cluster interaction remain detectable

even in more evolved systems, imprinted for example in the dark matter (e.g., Tam

et al., 2020) and the gas components (e.g., Ueda et al., 2020).

When analyzing GC mergers, cluster galaxies can be considered as point par-

ticles moving at high velocities with a low probability of collision while, on the

contrary, the ICM gas is expected to slow down and lag behind the collisionless

components (Pizzolato and Soker, 2010; Massey et al., 2011). In fact, in mergers

of GCs with similar masses, cluster galaxies will follow the established merger

collisionless course while the collisional ICM gas will be slowed down and exhibit
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ram-pressure processes and heating. This will generate a displacement between

both components during the collision. In this cases, the center of the DM compo-

nent, which represent the bulk of the total matter, is found to be displaced from

the X-ray emission gas and galaxies (Clowe et al., 2004), and this displacement

from galaxies is likely to be much smaller for minor merger events (Massey et al.,

2011, also see Fig. 1.1). This phenomenon will generate a projected separation

between the BCG and X-ray emission peak/centroid of the GC (denoting concen-

tration of the ICM, e.g., Clowe et al., 2004; Mann and Ebeling, 2012a) which can

be partial (e.g., Monteiro-Oliveira et al., 2017) or total (e.g., Clowe et al., 2004).

Figure 1.1: Figure from Harvey et al. (2014) illustrating all three components of an infalling
structure to the main cluster. The notation is G for gas, D for DM, I for the intersection point
closest to the DM in the direction towards the gas, and S (‘stars’) for galaxies.

Merging clusters also play a role in galaxy evolution. As clusters merge, galax-

ies in the GCs are subject to extreme ram pressure and such effects can be seen

most beautifully in jellyfish galaxies (Owers et al., 2012; McPartland et al., 2016;

Poggianti et al., 2016; Roberts et al., 2021). Although jellyfish galaxies (see Fig.

1.2) are examples of extreme galaxy evolution, changes in the overall galaxy pop-

ulations during mergers are subtle but may be significant enough for detection.
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For instance, some systems show a trend for a merger-induced triggering in their

star formation (e.g., Stroe et al., 2017; Hernández-Lang et al., 2021), although for

others no chance has been found (e.g., Mansheim et al., 2017). Also intriguing,

Kelkar et al. (2020) found both scenarios in Abell 3376. After segregating the

merger effects from those due to the primitive cluster environment, they found

passive spiral galaxies in the central regions, resembling vestiges of a relaxed

cluster environment evolution. Meanwhile, post-starburst galaxies evidenced a

rapid evolution due to shock-induced star formation or intense surges in the ICM

pressures at early stages of the merger. Nevertheless, their pilot study should

be applied to a larger number of disturbed systems to generalize (or not) these

findings. In this sense, the construction of a large sample of disturbing clusters en-

compassing several merger configurations (e.g. mass ratios, redshifts) and stages

(i.e. time since/to collision) is vital for the goal of performing a comparative

study of the merger impact on galaxy properties. Currently, studies over samples

of merging clusters with high quality HST imaging range from a few dozens (≈ 30;

e.g., Harvey et al., 2015), to up to thousands of them when large surveys are used

(≈ 2, 000; e.g., Wen and Han, 2015; Yuan et al., 2022), but only a small fraction

of them, if any, had their kinematics addressed in fully details, be through hydro-

dynamical simulations (e.g., Chadayammuri et al., 2022), identification of shock

features (e.g., Cho et al., 2021), or a semi-analytical treatment (e.g., Dawson,

2013; Hernández-Lang et al., 2021).

The classification of the cluster dynamical state has been done using the shape

of the red galaxy distribution (Wen and Han, 2015), the X-ray morphology (e.g.,

Nurgaliev et al., 2017; Lovisari et al., 2017; Yuan and Han, 2020; Yuan et al., 2022),

the BCG-gas offset (Lopes, 2007; Mann and Ebeling, 2012b; Zenteno et al., 2020),

the radio emission (Osinga et al., 2021; Cuciti et al., 2021), the comparison among

different mass estimators (weak lensing, X-ray, SZ, dynamics; e.g., Soja et al.,

2018; Monteiro-Oliveira et al., 2021), hydrodynamical simulations (e.g., Lourenço

et al., 2020; Doubrawa et al., 2020; Moura et al., 2021), and spectroscopy (e.g.,

Ferrari et al., 2005; Sifón et al., 2015; Balestra et al., 2016). This last method is

an important probe of the cluster disturbance level as it provides spectroscopic

properties of the sample of galaxy members such as their line-of-sight (LoS) distri-

bution. As the merger goes on, it leads to a rearrangement of the cluster internal

energy that turns into a more enhanced effect near to the pericentric passage (e.g.,

Pinkney et al., 1996; Monteiro-Oliveira et al., 2022). Understanding how the boost
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Figure 1.2: Ram pressure stripping of gas from a galaxy in ESO 137-001 in the Norma cluster.
Image taken with the HST.

on the cluster’s velocity dispersion varies with the time to/since collision, viewing

angle, and other merger configurations not only provides an important tool to

estimate the merger age (through the comparison with non-biased weak lensing

masses; e.g., Monteiro-Oliveira et al., 2018) but also to identify merger candidates

through statistical methods (e.g., A. Knebe & V. Muller, 1999; Hou et al., 2009),

or by using up to date machine learning techniques (e.g., de los Rios et al., 2016).

Spectroscopic classification of the dynamical state of GCs involves the use of

the shape of the velocity profile to separate relaxed from unrelaxed clusters. This

is done by exploiting the fact that the velocity distribution of dynamically relaxed

clusters show a nearly Gaussian distribution (Beers et al., 1990; Finn et al., 2008).

Any departure from such distribution would indicate a perturbation in the cluster

dynamical state. Thereby, is common to use statistical tests to compare the cluster

velocity distribution to a Gaussian distribution. For example, Hou et al. (2013)

classified the dynamical state of galaxy groups from different catalogs in the range
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0≤ z ≤1 by using the Anderson-Darling (AD) test. Hou et al. (2013) used the AD

tool to probe the hypothesis that the group’s velocity distribution is drawn from a

Gaussian distribution. Hou et al. (2013) found no significant correlations between

the dynamical state of the groups and the fraction of non-star-forming galaxies.

The AD test was also used by Bayliss et al. (2016, B16 hereafter) to estimate the

probability for 62 GCs velocity distributions, in the redshift range 0.3 < z < 1,

to be non-Gaussian. Sifón et al. (2015), using the spectroscopic information of 90

GCs in the redshift interval 0.05< z <0.55 and the Dressler-Schectman test (DS,

Dressler and Shectman, 1988) to select relaxed and unrelaxed GCs based on the

position and the galaxy velocities to find sign of substructures, find that there

was no correlation between alignments of the member galaxies dynamical state of

GCs. Ribeiro et al. (2013), using spectroscopic information of 146 GCs classified

as disturbed and 27 GCs classified as relaxed, find that GCs with velocity profiles

deviated from a Gaussian distribution (i.e. unrelaxed) have luminosity functions

with fainter characteristic magnitude m∗ and shallower slopes compared to the

GCs with Gaussian velocity profiles (i.e. relaxed). In this scenario a fraction

of the faint galaxies are formed in the relaxed clusters, possibly by transforming

brighter late type galaxies into dwarf galaxies (Zenteno et al., 2020).

It is important that samples of merger candidates should be identified using

a set of proxies (i.e. using several statistics to classify the dynamical state in

multiple dimensions; e.g., Pinkney et al., 1996) and to facilitate the comparison

to simulations, the sample of confirmed mergers should be mass limited, nearly

redshift independent, and statistically significant.

The South Pole Telescope (SPT) SZ survey is an ideal sample for the study we

want to pursue. This survey accounts for 1,202 cluster candidates detected, from

which there are 760 confirmed GCs (Bleem et al., 2015, 2020, 2022). Zenteno et al.

(2020, Z20 hereafter) studied the impact of the dynamical state of clusters on 288

SZ-selected GCs detected by the SPT, finding differences between the overall clus-

ter populations between the most relaxed and most disturbed systems. In Z20,

most of the classification of merging clusters was done using the offset between the

gas (measured by the SZ or X-ray centroid/peak) and the collisionless component

traced by the BCG. Z20 found that clusters, irrespective of their dynamical state,

have a consistent faint end slope luminosity function (LF) up to z ∼ 0.55. At

z ≥ 0.55 disturbed clusters exhibit a steeper slope with respect to the relaxed

sample while no difference was found at lower redshifts. This result is consistent



1 Introduction 8

with a scenario where the fainter galaxies are brought in by mergers (steeping

up the LF faint end) and, as the clusters relax, they are destroyed and/or trans-

formed. At the same redshift range, Z20 found that relaxed clusters exhibit a

fainter m∗, which could be due to a more efficient dynamical friction at z > 0.6,

enhancing the accretion of bright neighbouring galaxies by the BCG. This picture

is consistent with the finding that BCGs in relaxed clusters at z & 0.55 exhibit an

excess brightness when compared to BCGs from the disturbed and general cluster

populations. The characterization of the dynamical state of clusters is then in-

dispensable to understand the evolutive processes of galaxies there in and having

a large sample of these systems is essential for the development of this research

field.

1.3 Cluster sample and thesis goals

Here we analyze 15 GCs with Gemini/GMOS spectroscopic data in the redshift

range 0.3 < z < 0.7, including 14 classified as merging cluster candidates by Z20.

This sample consists in SZ-selected and optically-confirmed clusters at signal-

to-noise>4.5(5) which can be considered as approximately mass selected with a

nearly redshift independent mass threshold of M200 > 4× 1014 M� (Bleem et al.,

2015).1

The sample has optical imaging in the DES survey2 which comprises nearly

5,000 deg2 of grizY imaging in the south Galactic cap, including nearly 390 mil-

lion objects, with depth reaching a signal-to-noise ratio ∼10 for extended objects

up to iAB ∼23.0 (Sevilla-Noarbe et al., 2021). In addition to select the BCG

candidates for the clusters, Z20 calculated M200 and R200 from the SZ based M500

published in Bleem et al. (2015). Bleem et al. (2015) also estimated photometric

cluster redshifts by searching for a redshift with a clear excess of galaxies near the

candidate position that are consistent with the expected red sequence.

In this thesis we use spectroscopic data to confirm the dynamical state of the

clusters by analyzing multiple proxies, measure the dynamical cluster masses, and

classify the membership of candidate BCGs. In addition, we take 123 GCs from

1M200 is the mass contained inside a sphere of radius R200 with average mass density equal
to 200 times the critical density of the universe. Being R200 the radius at which the sphere
account for that density.

2https://www.darkenergysurvey.org/des-year-3-cosmology-results-papers/
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literature with available spectroscopic data to amass a large sample of clusters

and run our tests.

This thesis is organized as follows, in Chapter 3, the observation design, data

reduction, and spectroscopy are described. Other sources and samples used in

the study are detailed too. Chapter 4 is then dedicated to explain the techniques

to find cluster redshifts and dynamical masses, describe our galaxy membership

selection, and describe the methods to classify the dynamical state of the clusters.

In Chapter 5 we report our estimations and BCG membership for each cluster.

Also, dynamical state results on the clusters are presented here. Finally, Chapter

6 contains the discussion and conclusions on the results together with numerical

simulations and the application of our tests to the other samples from literature.

We use Bocquet et al. (2015) cosmology assuming a flat ΛCDM cosmology

with H0 = 68.3 km s−1 Mpc−1 and ΩM = 0.299.



Chapter 2

Objectives

In this thesis we analyze spectroscopic data of 15 GCs, 14 of which are can-

didates to disturbed clusters, taken with the GMOS spectrograph in the Gemini

South telescope. We analyze the dynamical state of the clusters by using statis-

tical tests to probe the distribution of spectroscopic members in the GCs. These

tests probe the LoS and spatial distribution of the GCs. In the process, we es-

timated dynamical masses and find the BCG membership status for each GC in

our sample. Finally, using 123 GCs collected from literature, we amass a large

sample of clusters and run our dynamical tests. To achieve this, a series of specific

objectives were developed:

• Estimate the clusters redshift, velocity dispersion, and dynamical mass.

• Confirm the BCGs membership by estimating their peculiar velocities to

their respective clusters.

• Analyze the dynamical state of the clusters by using different statistical

techniques to probe their distributions in 1, 2, and 3 dimensions.

• Discuss the tests outcome by simulating merger scenarios to test the robust-

ness of the statistical techniques.

• Employ the statistical techniques over a large sample of GCs with public

available spectroscopic data.

10



Chapter 3

Data

3.1 Selection of the Merging cluster candidates

and the Galaxies for spectroscopy

The cluster data set used in this work correspond to 43 disturbed cluster can-

didates from the Z20 sample. From the original 43 disturbed cluster candidates,

22 systems in the redshift range between 0.3 < z < 0.7, were visually selected

due to their high asymmetric red sequence galaxy distribution to be observed.

From those 22 we obtained data for 14 of them plus SPT-CLJ2100-5708, a cluster

classified as disturbed in early versions of Z20 but which was discarded in later

iterations. By the time the observations were made all the clusters were candidate

to disturbed clusters. As an example, Figure 3.1 shows the projected density con-

tours (from the red cluster sequence galaxies) overlaid on the DES i-band images

(top panel) and the color-magnitude diagram (bottom panel) for the unrelaxed

cluster SPT-CLJ0522-5026 at z = 0.52 selected from Z20. The galaxy distribution

in the region defined by the linear color-magnitude relation for early-type galaxies

(the red cluster sequence, RCS) was used to select clusters with clearly spatially

recognizable substructures (top panel in Fig. 3.1) to improve the chance to assess

the cluster’s dynamical state, especially in cases where the collision is nearly in

the plane of the sky (Clowe et al., 2004, 2006).

The galaxies are selected by fitting the RCS created from a passive evolving

stellar population synthesis model (Bruzual and Charlot, 2003) at the clusters

redshift1, and adopting a RCS width of ±0.22 mags (or 3σ, López-Cruz et al.,

1Estimated as “optical” redshifts by Bleem et al. (2015), section 5.2 in there

11
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2004) from the RCS best-fit. This is done by using catalogs created by the Dark

Energy Survey (bottom panel in Fig. 3.1).

The exposure time and the number of masks were designed to have enough

cluster members to be able to detect a major merger. The number of cluster

galaxies are estimated by simulating two overlapping clusters with the same mass,

represented by two Gaussian distributions, with a large velocity separation. Both

Gaussian distributions have velocity dispersions of σ=1,000 km s−1 and are sep-

arated by 3,000 km s−1. After applying an Anderson-Darling normality test, this

simulation finds that 50 randomly selected galaxies are needed to confirm that

they are not drawn from the same Gaussian distribution to a 90% confidence

level. Furthermore, by targeting RCS galaxies, B16 showed that there is a 60%

probability that the selected targets are actually part of the cluster. This sets the

minimum number of galaxies needed per cluster to establish the cluster dynamical

state to ∼ 80. The required depth to obtain ∼ 80 cluster galaxies can be esti-

mated by integrating the luminosity function (e.g., Zenteno et al., 2016; Hennig

et al., 2017). This shows that to find ∼ 80 galaxy members for a cluster with a

typical SPT M200,c mass (5 × 1014 M�), magnitudes of m∗+1 mag are required,

corresponding to an apparent magnitude of r = 20.5 AB mag at z = 0.3 and

r = 23.0 AB mag at z = 0.7.
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Figure 3.1: Top panel: Projected density contours (from the RCS galaxies) overlaid on the DES
i-band images for the unrelaxed cluster SPT-CLJ0522-5026 at z = 0.52. Levels begin at 100
galaxies Mpc−2 and increase linearly with increments of 50 galaxies Mpc−2. The field-of-view
of the image is 7.7 × 7.7 arcmin2 (∼ 2.9 × 2.9 Mpc2 at the redshift of SPT-CLJ0522-5026).
Note the two clear separate structures in SPT-CLJ0522-5026 (separated by ∼ 0.8 Mpc). Other
over densities are detected and possible connected to the cluster. The red square shows the
BCG location. The large blue circle indicates the radius R200. Bottom panel: Color-magnitude
diagram for SPT-CLJ0522-5026 with the total (black dots), blue (blue dots), and red-sequence
(red dots) galaxies within R200. The lines correspond to the best fit of the model ± 0.22 mags.
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3.2 Mask design and Observations

Optical imaging and catalogs with accurate equatorial coordinates (0.1” or

better) are crucial to create multi-object spectroscopic (MOS) masks. Images

and catalogs from the Dark Energy Survey were used (propid 2012B-0001; PI

Friedman). Where the images, covering the area from which the target lists are

extracted, were downloaded from the DES cutout service2 while catalogs were

downloaded using an SQL service (see appendix A.1). Targets galaxies were se-

lected within ±0.22 mags from the RCS best-fit. Since ∼80 targets per cluster

were observed, two masks per cluster are required. Therefore, the masks have to

be aligned with the projected merging axis indicated by the red galaxy distribution

to allow the highest number of slits in the mask (see app. A.2).

The IRAF task gmskcreate, from the Gemini-GMOS package, is used to create

the object table (OT) needed to proceed with the mask’s design. The input file

for gmskcreate contains the ID, the equatorial coordinates (RA, DEC) and the

magnitudes of the galaxies, which are mandatory. We also include other optional

parameters such as the priority, slit width, and the slit length. In addition, the

positions and magnitudes of three point sources (stars) carefully selected are in-

cluded in the list. These stars are used to align the masks on the sky and are

carefully chosen to maximize the number of galaxies in the masks. Each OT con-

tains the information about the coordinates of targeting galaxies, the magnitudes,

the slit width and the slit length to be used, the X and Y position on the pre-

imaging (the DES images), a priority flag (from 1 to 3, for high to low priority

targets, respectively), and the information about three stars to be used to align

the masks on the sky.

Once gmskcreate step is completed the Gemini MOS Mask Preparation Soft-

ware (GMMPS) tool is used taking as input the OT and the pseudo-images3.

GMMPS allows to set three priority levels for the catalog objects, based on the

magnitudes of the objects. Based on that priority system, it creates an “object

definition file” (ODF), which is the final mask design4. More priority is given

to brighter objects: High priority (flag 1) for galaxies with magnitudes between

2https://deslabs.ncsa.illinois.edu/desaccess/
3The DES images are transformed by gmskcreate into a pseudo-image, mimicking a GMOS

pre-image. The images are used to inspect the mask design.
4For detailed information and step by step instructions on the mask design see https:

//gmmps-documentation.readthedocs.io/en/latest/index.html

https://deslabs.ncsa.illinois.edu/desaccess/
https://gmmps-documentation.readthedocs.io/en/latest/index.html
https://gmmps-documentation.readthedocs.io/en/latest/index.html
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m∗ and m∗ + 0.5; Medium priority (flag 2) for galaxies with magnitudes between

m∗ + 0.5 and m∗ + 1; Low priority (flag 3) for galaxies with magnitudes between

m∗ + 1 and m∗ + 1.5. Finally, if space is available in the masks, suitable galaxies

are selected manually to fill empty spaces in the mask with slits. When selecting

targets for the second mask, the majority of targets were already selected for the

first mask and there was a low number of available targets for the second mask. In

this case, if there are no target candidates available near an empty space, targets

selected for the first mask are used to fill that empty space. This produce that a

single source may have repeated spectroscopic data taken with both masks. These

”paired” spectra from the same sources are latter used for uncertainty statistics.

Finally, each mask has 45 objects and the final designed masks, the ODFs, are

then sent to the observatory for masks cutting. These observations were carried

out with the Gemini Multi-Object Spectrograph (GMOS) mounted on the Gem-

ini South telescope (program prop-id GS-2018B-Q-233 Band 3, PI: A. Zenteno),

between October 6th, 2018 and February 6th, 2019. By the end of the 2018B

semester, 15 clusters were observed.

All masks were observed during dark/gray time, with a good transparency,

and with a seeing between 0.9” and 1.3”. The total exposure times used depend

on the redshifts of the clusters and varied between 900s (3 × 300s) for clusters

with 0.3 < z < 0.35 up to 3600s (3 × 1200s) for clusters with 0.55 < z <

0.66. All spectra were acquired using the 400-lines per millimetre ruling density

grating (R400), 1” slitest, 2×2 binning, and central wavelengths between 6800 Å

to 7800 Å. The central wavelength used varies according to the redshifts of the

clusters to maximize the wavelength coverage. Offsets of 80 Å in the spectral

direction toward blue and red were applied between exposures to allow for the

gaps between CCDs and to avoid any lose of important emission/absorption lines

present in the spectra. For each mask a set of spectroscopic flats and CuAr

comparison lamps spectra for wavelength calibration were obtained before or after

each science exposure. In addition, the spectrophotometric standard star CD-34

241 was observed using the same configuration as the science images to relative

flux calibrate the spectra.
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3.3 Data reduction

The observed spectra were reduced using the Gemini GMOS package version

1.14. following the standard procedures for MOS observations. The reduction

process begin with the bias subtraction. Calibration files were chosen to match

the science images’ observation date, including data from the previous and the

following night. Using 15 bias files a master bias is created using the task gbias.

The master bias file is then applied to all the science images, the CuAr lamp

images, and the spectroscopic flats and then they are trimmed with the task

gsextract. Both masks in a cluster use the same master bias unless they had

been observed with more than three days apart. Before subtracting the bias is

necessary to replace pixels with wrong values (i.e. correction of bad pixels).

Then, the task gswavelength is used to establish the wavelength calibration

using the GMOS CuAr comparison lamps based on a pre-identified list of lines

from the GMOS package. This task automatically identify the lines, establish the

wavelength calibration for all spatial points, remove the no-linear components,

and generate a database with the correction to be done to remove the S-shape

distortion presented in the 2D slits. In some cases gswavelength fails to fit the

lamp’s spectra to the database and the spectral lines have to be identified visually,

using a reference plot available in the Gemini web page5. The final wavelength

solution has an average residual values (rms) of ∼0.20 - 0.25 Å.

Next, the task gsflat is used to process the spectroscopic flats for each wave-

length setting. This task remove the calibration unit plus GMOS spectral response

and the calibration unit uneven illumination, normalizing and leaving only the

pixel-to-pixel variations.

The following step is to apply quantum efficiency (QE) corrections to science

and flat-field images using the task qecorr. This is needed to correct the relative

difference in QE between the GMOS CCD2 and the other 2 CCDs. After nor-

malizing the flats by QE corrections, the task gsreduce is used to flat-field the QE

corrected science images. After this step, bad pixels are interpolated and images

are cleaned from cosmic rays using the lacos spec script6.

The resulting two-dimensional science spectra are then wavelength calibrated

5Arc lamp line plots and lists https://www.gemini.edu/observing/resources/

near-ir-resources/spectroscopy#Wavelength
6astro.yale.edu/dokkum/lacosmic

https://www.gemini.edu/observing/resources/near-ir-resources/spectroscopy#Wavelength
https://www.gemini.edu/observing/resources/near-ir-resources/spectroscopy#Wavelength
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Figure 3.2: Obj ID: 252454243, slit number 32, second mask for SPT-CLJ0144-4807. 1D spectra
shown using splot and 2D spectra displayed with saods9. Highlights indicate some visually
identified absorption lines.

and corrected by the S-shape distortion using the task gstransform, sky-subtracted

using the task gsskysub, and combined using the the task gemcombine. The spectra

in the 2D combined science images are then extracted to a one-dimensional format

with the task gsextract using a fixed aperture of 1.4”. The same procedure is used

to reduce the spectrophotometric standard star CD-34 241. The 1D-spectrum of

the standard star is used to determine the sensitivity and extinction functions

using the task gsstandard. Finally, the task gscalibrate is used to calibrate in flux

and correct by extension the 1D-extracted GMOS spectra. With the choice of 1”

slit width, the spectra have a resolution of ∼7 Å (measured from the sky lines

FWHM), a dispersion of ∼ 1.5 Å pixel−1, and a wavelength coverage between

∼5,000 Å - ∼10,000 Å. Fig. 3.2 shows an example of the data reduction products,

a 1D and 2D spectra. The final sample consist of 1334 spectroscopic sources.
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3.4 Spectroscopy

3.4.1 Spectra treatment before redshift measurement

Before measuring redshifts from the spectra we remove sky-line residuals, bad

pixels contaminants and odd behaviors to reduce any chance of confusion when

identifying spectral features. First, we use the IRAF package lineclean to re-

place anomalous pixels in the 1D spectra by fitting a one dimensional Chebyshev

function of order 13 to the continuum (see Fig. 3.3). This will reject any data

point outside 2.5σ in the selected region of the spectra and replace it with the

value of the fit. This task should be used with great caution, inspecting interac-

tively each routine step to select precise regions of the spectra to alter, otherwise

the continuum fit can delete good data from feature lines. We refer to Wells

and Bell (1994) for proper indications on how to use the lineclean interactive

interface.

Figure 3.3: lineclean interactive panel example. Obj ID: 158525328, slit number 30, first mask
for SPT-CLJ2344-4224. The figure shows the flux calibrated 1D spectra. The central curve is
the order 13 Chebyshev fit to the continuum.

While using lineclean, we also identify and reject spectra corresponding to

stars or galaxy spectra with too low signal-to-noise (see Fig. 3.4). At this point,

we exclude 192 sources yielding 1142 spectra to process.
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Figure 3.4: An example of a star and a low-signal spectra.

We then remove prominent sky features that populated the spectra. In partic-

ular, the OH line at 7620Å presented in all the spectra (see Fig. 3.5). The line is

removed by replacing the region between 7580Å to 7670Åwith a 1D linear func-

tion connecting the first and last data point in the section. This task is performed

using routines from astropy7.

Figure 3.5: Spectra of sources from different clusters denoting the presence of the OH line at
7620Å line.

Once the treatment of the 1D spectra is completed, we proceed to measure

redshifts for the final sample of 1142 galaxy spectra.

3.4.2 Redshift measurements using FXCOR

To obtain redshift estimations we use the IRAF task fxcor inside the pack-

age RV. This task makes a cross-correlation between the object and a series of

template spectra yielding the velocity shift (corrected by heliocentric motion ef-

fects), the velocity error (as independent estimation in km s−1), and the R-value

as a reliability parameter of the cross-correlation (Tonry and Davis, 1979). For

detailed information on fxcor we refer to Alpaslan (2009) where the complete

usage instructions are described.

7https://docs.astropy.org/en/stable/io/fits/index.html

https://docs.astropy.org/en/stable/io/fits/index.html
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To process the spectra, fxcor (along with many other parent programs such

as RVIDLINE or XCSAO) requires specific headers to make the heliocentric cal-

culations. We check that the headers include the following parameters:

• RA, DEC: Right Ascension and Declination of the Target

• UT, UTSTART, UTOPEN: UT at observation start

• UTEND: UT at observation end

• UTMIDLE: UT during half the observation

• EXPTIME: Exposure time in seconds

• EXPOSURE: Requested exposure time in seconds

• EPOCH: Epoch of target coordinates

• EQUINOX: Equinox coordinate system

• DATE-OBS: UT Date of observation (YYY-MM-DD)

• ST: Sidereal time at the start of the exposure

• AIRMASS: Mean airmass for the observation

• OBSERVAT: Name of telescope (Gemini-North—Gemini-South)

• JD: Julian date

• HJD: Heliocentric Julian date

• LJD: Local Julian date keyword

• SITELONG: Observatory longitude

• SITELAT: Observatory latitude

• SITEELEV: Observatory elevation
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fxcor allows the use of multiple templates to cross-correlate with the ob-

served spectra. We use three templates from the IRAF package rvsao; eltemp

and sptemp, which are composites of elliptical and spiral galaxies, respectively;

and habtemp which is a composite of absorption line galaxy at z = 0. The first

two were produced with the FAST spectrograph for the Tillinghast Telescope

(Fabricant et al., 1998a) while habtemp was produced with the hectospec spec-

trograph for the MMT (Fabricant et al., 1998b). Additionally, we use a synthetic

galaxy template syn4 from stellar spectra libraries constructed using stellar light

ratios (see section 3 in Quintana et al., 2000, for details). Fig. 3.6 show the 1D

spectra of the templates. Our spectroscopic methods will assume that line fea-

tures in them can be found in the spectra of galaxies with a certain signal but

shifted to larger wavelengths.

Figure 3.6: Template spectra listed from top to bottom are syn4, eltemp, sptemp and habtemp.

Since we use several templates and the sample has a large range of redshifts,
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to obtain reliable redshifts we use a custom pipeline to obtain redshift estimations

based in the fxcor task and its input parameters. Specifically, fxcor allows to

indicate the sections of template and object spectra to be correlated (see Fig.

3.7). These parameters are respectively rsample and osample and they will be

the main focus of our custom pipeline to extract redshifts autonomously.

Figure 3.7: Example of the interactive spectrum mode of fxcor. The top panel shows the spectra
of a galaxy from SPT-CLJ0111-5518 while the bottom panel is the syn4 spectra template. Both
spectra have their continuum subtracted. In the interactive mode, the s hotkey can be used to
select with the cursor the regions to correlate (the green range line). These are the rsample

and osample parameters.

3.4.3 Automated redshift estimation pipeline

For a single spectra, we estimate 4 velocity shifts corresponding to the cross-

correlation with each of the 4 templates. Over these measurements we take the

following considerations to obtain a velocity shift:

• Three or more templates have to agree in the heliocentric velocity within a

range of ±100 km s−1 from the median of the four templates.

• At least two of these templates have a Tonry Davis parameter R ≥ 5.

• The velocity error estimation of the templates that met the first condition

have to be in the range 5 < συ < 350 km s−1, otherwise it means that one

or more redshift estimations went wrong.

If these conditions are met we take the mean of the heliocentric velocities and the

errors of the 3 or 4 templates. This is what we called an ideal result.
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To obtain a final velocity estimation we run fxcor following a sequence of rounds

where different rsample, osample, and prominent spectra features are considered

each time (see Table 3.1). This generate a sample of ideal results for a single

galaxy spectra from where we select the final velocity estimation. The sequence

of rounds works as follows: The wavelength ranges in Table 3.1 are used for

the rsample parameter to select the section of the template spectra to correlate.

The first round 0-A correlates the entire spectrum of object and template spec-

tra. Subsequent rounds then correlate smaller ranges considering less feature lines

each time. In practice, we start by performing the 0-A round for all galaxies from

the same mask. osample is then calculated from the median heliocentric velocity

υm of the ideal results generated. This way, osample = rsample × (1 + (υm/c)),

where υm is re-estimated on each round including ideal results posterior to

round 0-A.

With the exception of the 0-A round, the entire sequence of rounds is performed

three times: Denoted with ’C’ for correlations with the osample parameter calcu-

lated as if galaxy at the median cluster redshift υm/c; ’B’ for those correlated as if

foreground galaxy, υm/c−0.2; and ’D’ for those correlated as if background galaxy,

υm/c + 0.2. With 10 rounds plus the initial 0-A round, this set the maximum of

possible ideal results for a single galaxy to 31. Since early rounds consider more

feature lines; ’B’, ’C’, and ’D’ rounds do not differ significantly on their velocity

result for a single galaxy. However, late rounds can have difficult times yielding

ideal results and their velocity result can differ in many km s−1. In the case of

spectra that yields no ideal results, the spectra is checked by eye along with the 4

templates in the interactive mode of fxcor to obtain an estimation following the

stated conditions. In many cases, these spectra are classified as a low-signal and

are removed from the study sample.

To select the final velocity estimation of an individual galaxy we take the veloc-

ity indicated by the most number of ideal results for that galaxy. For this, we

group these results in bins of 200 km s−1 and take the peak with more results.

In some cases, there are many peaks with the same amount of results. The one

with the earlier rounds has priority since later rounds consider a lower number

of features. With the peak selected, the ideal result from the earliest round in

that bin is taken as the final result. Cases with no ideal results are solved in

interactive fxcor mode. If the conditions for ideal result are met, this is the final

velocity. Only a few 4 to 6 galaxies per cluster have to be processed this way and
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a total of 12 galaxies is rejected as a low-signal spectra. All these considerations

are included in a custom pipeline to extract the heliocentric velocity estimation

for the entire spectral sample automatically. The python implementations and

scripts that conform this pipeline can be found in a public GitHub repository8.

The final sample has 1130 galaxies with redshift estimation.

Table 3.1: Sequence of rounds for spectroscopy with fxcor.

Rounda rsample features
Å

0-A all all
0-B,0-C,0-Db 6500-6780 Hα, [SII]
1-B,1-C,1-D 3500-6000 D4000, G-band, Mg, Na
2-B,2-C,2-D 3500-5300 D4000, G-band, Mg
3-B,3-C,3-D 4200-6000 G-band, Mg, Na
4-B,4-C,4-D 3500-4600 D4000, G-band
5-B,5-C,5-D 4200-5300 G-band, Mg
6-B,6-C,6-D 4820-5920 Mg, Na
7-B,7-C,7-D 3800-4400 D4000, G-band
8-B,8-C,8-D 4800-5400 Mg
9-B,9-C,9-D 5700-6300 Na

Notes. Prominent feature lines: Hα(6559Å), [SII](6717,6731Å), D4000 (Calcium H at
3933Å and K at 3967Å), G-band(4304Å), Mg(5607Å), and Na(5892Å). a. Rounds are

accompanied by a letter B, C, or D indicating that the osample parameter is
calculated in, before (-0.2) or after (+0.2) the median redshift. b. Rounds 0-B, 0-C,

and 0-D accounts for prominent emission lines in our sample. Ideal results from these
rounds only consider estimations from the correlation with the sptemp template. This

estimation must have R ≥ 15 and met the velocity errors condition.

To test the effectiveness of this automated redshift measurement we compare

the heliocentric velocities obtained for pairs of spectra following the approach

of Quintana et al. (2000). In the final sample there is a total of 49 galaxies

with spectra observed in two different masks. For these galaxies, we use the

heliocentric velocity υ and the velocity error σ from both masks to compute

(υmsk1 − υmsk2)/(σ2
msk1 + σ2

msk2)1/2 to compare the differences between results. In

Fig. 3.8 is the distribution and mean statistic of the 49 galaxies. Note that there

are some galaxies with discrepancies greater than 100 km s−1. This number of

discrepancy cases suggest that ∼24%(12/49) of the entire sample exhibit a wrong

8https://github.com/N0D3J1TQU0/autofxcor#autofxcor

https://github.com/N0D3J1TQU0/autofxcor#autofxcor


3 Data 25

velocity estimation. In response to this behavior we examined the correlation

between the statistic and the i-band magnitude of the sources. Since we manually

selected some galaxies to fill the masks while making the ODFs for the mask design

(see section 3.2), we lack the DES magnitudes for some galaxies in our catalog.

To get these magnitudes we matched our catalogs with the DES catalogs within

1 arcseconds using the package skycoord. Fig. 3.9 show the distribution of this

statistic against the i-band magnitudes of the galaxies. As a practical solution, we

selected, by visual inspection, limit magnitudes for each cluster (specifically for

each exposure time group) for which all the spectra beyond these limits is checked

by eye. The selected limit i-band magnitudes are 20.6, 21.4, 21.16, 21.3, and 21.5

for clusters with exposure time of 1.4, 1.6, 2.0, 2.5, and 3.1 hrs, respectively.

Figure 3.8: Histogram of residual of the heliocentric velocities normalized by the quadratic errors
for the 49 galaxies observed in two different masks. The red solid line indicate the mean value
of the distribution. The histogram shows the distribution from -1,200 to 2,200 km s−1.

After this process a total of 260 velocity shifts are re-estimated interactively

where all of these yield a velocity shift estimation. The final sample, keeping

first mask spectra in the cases of spectra pairs, has a total of 1081 galaxies with
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Figure 3.9: GCs grouped by requested exposure time. In the vertical axis the apparent magni-
tudes in the i band (taken from DES survey) and the horizontal axis shows the absolute value of
Quintana et al. (2000) statistic. In the legend is also the characteristic i-band magnitude of the
clusters. The red line indicate the selected limit magnitude at which fainter galaxies’ spectra is
inspected visually and redshifts are estimated interactively.
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estimated heliocentric velocities. The mean number of galaxies assigned to each

cluster is 72 ± 10. Finally, a 15.3% of the total observed spectra have to be

removed (by low signal or star spectra) from the sample.

3.5 Data from literature

In addition to the parent sample, we collected a total of 123 GCs that have

public spectroscopic data. This dataset includes 62 SPT GCs, in the redshift

range 0.3 < z < 1, from B16, with a number of spectroscopic members from N∼8

to ∼45 members. From Ruel et al. (2014), a sample of 48 SPT GCs (hereafter R14

sample) with redshifts between 0.3 < z < 1.3, and a number of members between

5 to ∼45, are retrieved. From Sifón et al. (2013) a total of 13 GCs, from the

Atacama Cosmology Telescope (ACT; hereafter S13 sample), spanning a redshift

range of 0.3 < z < 1 and 20 < N < 90. These catalogs can be downloaded from

VizieR (see app. A.1.1). These three samples gather a total of 4696 galaxy

redshifts across 123 GCs.

In addition to spectroscopy and optical imaging, we obtain the BCG positions

from Z20 for the 15 GCs. Also, we use the information in Z20 about the center

of the SZ emission centroid, M200, and R200. Nevertheless, SPT-CLJ2100-5708 is

not included within the 288 clusters studied in Z20 and thus, we only have these

parameters for 14 GCs of our sample.

The BCGs coordinates are matched to the cluster galaxy catalogs within 1

arcseconds using the package skycoord. For two clusters, SPT-CLJ2344-4224

and SPT-CLJ0600-4353, no match was found and we obtain these BCGs red-

shift using dedicated spectroscopy from SOAR/Goodman observations (see next

section).

3.6 Goodman Data

For SPT-CLJ2344-4224 and SPT-CLJ0600-4353 we measure the BCG redshift

using the Goodman red camera. We use a 1” slit oriented in an angle to cover the

BCG and another bright galaxy, for SPT-CLJ2344-4224 a galaxy also identified

by the Gemini GMOS spectroscopy. The data was reduced using the Goodman

Spectroscopic Data Reduction Pipeline (The Goodman Pipeline) installed in a
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machine in SOAR. To obtain redshifts we use fxcor interactively following the

methods described in 3.4.2. Thereby, our final sample consist of 1084 galaxies

distributed in the observed area of the 15 clusters with approximately 70 galaxy

redshifts each one.



Chapter 4

Analysis

4.1 Cluster redshift, membership selection, and

dynamical mass

4.1.1 Cluster redshift and velocity dispersion

Galaxy clusters can sustain heavy interior subclustering throughout its merg-

ing history (Mostoghiu et al., 2019). However, a central redshift can still represent

a good estimation of the position of the whole group. We are interested on mea-

suring the average cluster redshifts, which reflects the Hubble flow motion of the

cluster, and the velocity dispersion of clusters which is a proxy for the cluster’s

mass.

To find these parameters we use a 3σ-clipping on the peculiar velocities of the

galaxies (Yahil and Vidal, 1977; Mamon et al., 2010; Saro et al., 2013; Ruel et al.,

2014; Bayliss et al., 2016) which we apply iteratively using the biweight location

estimator as the center of the distribution. Goodall (1983) performed simulations

which showed that even for samples with at least 5 data points the biweight loca-

tion estimator retains high efficiency. Then, to calculate the velocity dispersion of

the distribution we follow Beers et al. (1990), using either the biweight scale σbi

or the Gapper scale estimator σg depending on the number of members N (σg is

preferred when N < 15; Beers et al., 1990). Note that in each iteration, peculiar

velocities of galaxies υi are obtained from their redshifts zi as υi = c(zi−z)/(1+z)

(Danese et al., 1980) where z is the iteration’s central heliocentric velocity found

by the biweight location divided by the speed of light (z = vHEL,bi−loc/c). Initial

estimations are taken from a first iteration with a peculiar velocity cut of ±5,000

29
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km s−1 relative to the (visually identified) starting guess of the cluster redshift.

Although, this is somewhat arbitrary, a generous 5,000 km s−1 cut ensures that all

cluster members are included. In one case the number of cluster galaxies was so

low that contamination dominated the velocity distribution, making it artificially

flat. To avoid this effect on low-member clusters we take an initial cut of ±2,500

km s−1 if the number of galaxies inside the first cut is less than 15 galaxies. Clus-

ter redshifts z and velocity dispersion σ are taken from the last iteration when

the clipping process converge and no galaxies are rejected.

Uncertainties of the velocity dispersion σBI are described by 0.92σBI/
√
N − 1

(0.91σg/
√
N − 1 for σg), which includes statistical uncertainties, systematic errors

from the estimators (e.g. caused by non-Gaussianity), and effects of selection

(e.g. rejection of true members and/or inclusion of non-members) (Ruel et al.,

2014). Cluster redshift uncertainties are estimated as the standard error ∆z =

σ(1 + z)/c
√
N (Ruel et al., 2014), where N is the number of galaxies inside ±3σ.

The individual galaxy redshift errors have a negligible contribution to the final

estimate of the cluster redshift. To test this we compute median cluster redshifts

that incorporate the individual galaxy redshift efforts by bootstrapping 1,000

samples and then computing the scatter of the median cluster redshift recovered.

We found that the bootstrapped uncertainty in the median cluster redshift due

to the individual galaxy redshifts is always lesser than 0.00025. Since these errors

are added in quadrature its contribution to uncertainty is even smaller and is

therefore disregarded.

4.1.2 Membership selection

While justifying a redshift cut for cluster membership is a straightforward

process for relaxed clusters, it is less so for merging systems. Since there is no

expectation for the distribution to be Gaussian, a 3σ-clipping (as in the cluster

redshift determination) is less well motivated. Following Hernández-Lang et al.

(2021) which studied an appropriate velocity cut in the LoS using the Illustris

TNG300 simulations, we classify galaxies with peculiar velocities within ±3,000

km s−1 from the cluster’s redshift as member galaxies. Furthermore, motivated by

different cuts made in the literature (e.g. Bayliss et al., 2016; Wen and Han, 2013)

we report the dynamical state results for other velocity cut levels; a ±3σ cut, and

a ±2,500 km s−1 cut. For the purpose of the dynamical state analysis, the center
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of the distribution is always taken as the cluster redshift z and the center of the

SZ centroid.

4.1.3 Dynamical mass

To estimate the cluster’s dynamical masses we use Munari et al. (2013) σv −
M200 scaling relation. This scaling relation was obtained from a radiative sim-

ulation which included star formation, supernova triggered feedback, and AGN

feedback. Munari et al. (2013) scaling relation is:

σ1D

kms−1
= A1D

[
h(z)M200,dyn

1015M�

]α
(4.1)

where A1D = 1177 ± 4.2 and α = 0.364 ± 0.0021. Mass errors are estimated by

propagating the velocity dispersion errors through eq. 4.1. Details on the code

line for this entire section can be found in app. A.5.

4.2 Dynamical state indicators

The dynamical state of a cluster can be identified by looking at the distribution

of its members where it is assumed that relaxed clusters should have an underly-

ing Gaussian distribution (Menci and Fusco-Femiano, 1996; Ribeiro et al., 2013;

Hernández-Lang et al., 2021). To parameterize this departure from relaxation in

the clusters we run multiple tests to classify their distributions as Gaussian (G)

or non-Gaussian (NG).

For LoS analysis we use the Anderson-Darling (AD) test that is one of the most

reliable 1D test to distinguish departure from relaxation (Hou et al., 2009). Other

1D test and a well known statistic used vastly in this topic is the Kolmogorov-

Smirnov test (KS; Kolmogorov, 1933). Despite its low power for normality tests

(Stephens, 1974; D’Agostino and Stephens, 1986; Hou et al., 2009), we include

the KS test in the analysis to examine its performance. As these tests are based

on the shape of the velocity distribution, the strength of the signal is higher for

mergers along the LoS.

To complement the 1D LoS analysis, we include the Multidimensional Gaus-

sian Mixture Modelling (Muratov and Gnedin, 2010) from the sklearn.mixture

Python package test (GaussianMixture; Pedregosa et al., 2011), and use it to find
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the most probable number of projected space components using spatial informa-

tion from the spectroscopically confirmed cluster members.

Finally, we included the Dressler-Schectman (DS) test (Dressler and Shectman,

1988), which uses both spatial and velocity information, thus making a 3D analysis

of the distribution.

In the following, we briefly explain the statistical tests used in this thesis and

the steps followed to calculate each statistic. Details on the python code used can

be found on app. A.6.

4.2.1 Anderson-Darling test

The AD test is a reliable tool to measure departure from relaxation. Hou et al.

(2009) showed that its application is not restricted only to Gaussian distributions,

moreover, it can be used with many continuous or discrete distributions. It is

based on the analysis of the empirical distribution function (EDF) returning the

statistical parameters A2 and A2∗ estimated from the ordered data {xi}

A2 = −n− 1

n

n∑
i=1

(2i− 1)(ln Φ(xi) + ln (1− Φ(xn+1−i)))

A2∗ = A2

(
1 +

0.75

n
+

2.25

n2

)
. (4.2)

with xi ≤ xi+1 and Φ(xi) is the cumulative distribution function (CDF) of

the hypothetical underlying distribution. A2∗ is a correction of the statistic for

cases where the distribution parameters of the merging clusters are not known a

priori (D’Agostino and Stephens, 1986; Hou et al., 2009). The significance level,

α, which gives the probability that the data comes from a Gaussian distribution

is then calculated as

α = a exp (−A2∗/b) (4.3)

where the introduced coefficients a = 3.6789468 and b = 0.1749916 are factors

determined via Monte Carlo simulations (Lloyd, 1998).

To interpret the results of AD tests we follow the criteria used by Hou et al.

(2009) where α < 0.05 indicates a NG distribution. Note that the probability α is

not normalized to unity allowing probabilities greater than 1 when A2∗ reach low
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values. The only statistical importance of the AD test is to identify cases where

the distribution is inconsistent with a Gaussian function at high significance for

the purpose of identifying NG distributions. Thereby, to avoid nonsensical results

we replaced all of these high α values to reach a maximum at α = 1.

4.2.2 Kolmogorov-Smirnov test

The one-sample KS test quantifies the distance between the empirical distri-

bution function (EDF) of the sample and the cumulative distribution function

(CDF) of the reference distribution. The null distribution of this statistic is cal-

culated under the null hypothesis that the sample is drawn from the reference

distribution (i.e. a G distribution in this case). The main characteristic of KS

tests is that it is sensitive to differences in both the location and the shape of the

cumulative distribution function. The statistic computed for the KS test is the D

value, which is the vertical difference between the EDF of the ordered data, xi, of

size n and the CDF. This value is derived from the positive deviation, D+, and

negative deviation, D−, from the CDF.

D+ = supremum

∣∣∣∣ in − EDF
∣∣∣∣ (4.4)

D− = supremum

∣∣∣∣EDF − (i− 1)

n

∣∣∣∣ (4.5)

D = max(D+, D−) (4.6)

Originally, this statistic provides means of testing whether a set of observations

are from some completely specified continuous distribution by comparing D to a

specific critical value depending on the sample size (Smirnov, 1948). This method

often probe to have some advantages over the chi-square test (David and Johnson,

1948; Massey Jr., 1951). It was the work of Lilliefors (1967) which found a way

to test the hypothesis that a set of data arises from a normal distribution with

unknown mean and variance. It modifies the standard KS test and present a table

with a new set of critical values for different sample sizes. Here we use Lilliefors

modification employing Stephens (1974) correction,

D∗ = D

(√
n− 0.01 +

0.85√
n

)
. (4.7)
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This last correction (equation 4.7) allow us to compare D with one critical

value table, rather than computing critical values for specific sample sizes and

significance levels. Thereby, we use a critical value of D∗ >0.895 to identify NG

from G clusters at a 95% confidence interval (Stephens, 1974).

4.2.3 Gaussian Mixture Modelling

A Gaussian mixture model (GMM) attempts to find a mixture of multi-

dimensional Gaussian probability distributions that best model any input data

set. GMM methods maximize the likelihood of the data set given all the fitted pa-

rameters, using the expectation-maximization (EM) algorithm (e.g., Press et al.,

2007). To derive explicit equations one can assume that each mode is described

by a Gaussian distribution as a simplification. The algorithm is fully scalable to

multivariate distributions and for this study we employ a bi-dimensional GMM

using sky projected coordinates of member galaxies.

Thereby, for a sample xnN of size N (x1, x2, ..., xi, ..., xN) with n parameters

(x1, x2, ..., xj, ..., xn) the probability distribution of a single data point P (xji ) is

P (xji ) =
K∑
k=1

pkN(xji |µ
j
k, σ

j
k),

where

N(xji |µ
j
k, σ

j
k) =

1

(2πσ2)1/2
e

[
− (x−µ)2

2σ2

]

is the Gaussian density of the kth component for the distribution of the jth

parameter with his respective mean µjk and standard deviation σjk. The weight

parameter pk is normalized as
∑

k pk = 1.

GMM methods stands out for its ability to determine the maximization like-

lihood values of the parameters (pk,µk,σk) but with the disadvantage that the

method will always split the data set into the specified number of modes, K

(Muratov and Gnedin, 2010). When fitting models, it is possible to increase the

likelihood by adding parameters, but doing so may result in overfitting. GMM ad-

dresses this problem by introducing a penalty term for the number of parameters

in the model called Bayesian Information Criterion (BIC). The BIC penalty term

approximate the posterior probability of a model with a uniform prior that scales

with ln(N). Although there exist other kind of metrics and methods, in this thesis
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we follow the work of Athey et al. (2019) that used the BIC to select the best

GMM model fitted to the data. For specific definitions and further information

we refer to the work of Athey et al. (2019).

To perform this routine first we use the cluster redshift, Right Ascension,

and Declination coordinates to obtain separations (X,Y) in Mpc to the center of

the distribution of each member galaxy. We use the multidimensional Gaussian

Mixture model from the sklearn.mixture Python package (GaussianMixture,

Pedregosa et al., 2011) that draws confidence ellipsoids for multivariate models

and then compute the BIC statistics. The outcome of this module provides the

number of subcomponents and the mean value of the location for each subcom-

ponent, predicts the labels for the data sample and provides the BIC criteria for

the number of subcomponents found. When searching for the right number of

subclusters the sample size of subclusters would fall significantly if the number of

modes is too high and it could lead to a wrong grouping of uncorrelated galaxies

(or the unnecessary dissection of a subgroup) if the number of member galaxies

is too low. Also, since we are looking to find if the cluster can or can not be

separated into more than one unique group, these statements motivate us to run

only two type of models, a unimodal distribution set with a number of modes of

K=1 and a bimodal distribution with a number of modes of K=2. We report the

number of subclusters indicated by the best model selected from the lowest BIC.

Finally, as GMM locate subcomponents in the distribution we speak of presence

of subclustering when identifying more than one component. We do not expect

that GMM capabilities identify perturbations of a dynamically unevolved cluster,

which not necessarily involves the merger of two separate components but instead

the virialization of already accreted systems (Mostoghiu et al., 2019).

4.2.4 Dressler-Shectman test

The DS test uses spatial information as well as redshift information. It evalu-

ates the local mean velocity kinematics of galaxy neighbors, identified in sky pro-

jected clusters, and searches for deviations from the cluster mean values (Pinkney

et al., 1996). For each galaxy the test takes n neighbours and determines the mean

local velocity υlocal and local velocity dispersion σlocal for each subsample. Finally,

compares the local values to the mean global velocity υc and velocity dispersion
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σc of the whole cluster of Ngal galaxies. These deviations are quantified by

δ2
local =

(n+ 1)

σ2
c

[
(υlocal − υc)2 + (σlocal − σc)2

]
. (4.8)

We adopt n = N
1/2
gal , as suggested by Pinkney et al. (1996). The significance of

substructure is quantified as the cumulative deviation ∆, which is the sum of δlocal

over all cluster galaxies Ngal,

∆ =

Ngal∑
local=1

δlocal (4.9)

∆ is large for groups with kinematically distinct subgroups; for random distri-

bution of velocities, ∆ values should be of the order of Ngal, but for the case of

NG distributions, ∆ can be significantly larger than Ngal, even if there is no sub-

clustering (Dressler and Shectman, 1988). For this reason, we calibrated the ∆

statistic by Monte Carlo simulations. The Monte Carlo simulation breaks any true

correlation between velocities and positions since it randomly shuffle these values

before quantifying any statistical parameter. So we ran 5,000 models for each

cluster and calculated ∆sim each time. The significance of having substructure or

the p-value is then calculated as the ratio of the number of ∆sim that is larger

than the estimated ∆ over the total number of simulations (N∆sim>∆/N∆sim
). The

smaller the p-value, the larger is the probability of substructure.

For clusters with a number of spectroscopic members greater than 20, the DS

test provides a robust identification of substructures when the p-value limit is

set to be under 0.05. For clusters with less than 20 spectroscopically confirmed

members this indicator becomes unreliable (Hou et al., 2012).



Chapter 5

Results

5.1 Cluster properties and BCG membership

In Table 5.1 cluster redshift values, velocity dispersions, and dynamical masses,

along with the number of member galaxies within ±3,000 km s−1, are listed. The

average of member galaxies per cluster is ∼35. Note that SPT-CLJ2100-5708 is

the only cluster with less than 15 members, thus we report σg (see § 4.1). In Fig.

5.1 we show redshift histograms of all galaxies for each cluster, including back-

ground and foreground galaxies. The red bars and insets show the velocity distri-

bution for galaxies within ±5,000 km s−1. In several cases a bi-modal distribution

seems visually striking, such as for SPT-CLJ2344-4224, SPT-CLJ0144-4807, SPT-

CLJ0451-4952, SPT-CLJ0354-5904, SPT-CLJ0111-5518, and SPT-CLJ0522-5026.

One of the goals of this thesis is to confirm the membership of the candidate

BCG selected by Z20. We matched the BCG positions to our cluster catalogs

using a radius of 1 arcsecond, finding 2 of them to be clearly foreground galaxies

with velocities with respect to the cluster below −19, 000 km s−1 (SPT-CLJ0151-

5654 and SPT-CLJ0439-5330), and two galaxies with velocities at −4, 286 and

6, 110 km s−1 (SPT-CLJ2344-4224 and SPT-CLJ2358-6129, respectively; see Ta-

ble 5.1 and dashed lines in Fig. 5.1). If we use a ±3, 000 km s−1 limit for cluster

membership (Hernández-Lang et al., 2021), then 11 BCGs belong to their respec-

tive clusters, all of them within ±1, 700 km s−1. The BCG contamination rate

is then of 27% ± 13% for the whole sample. If we exclude SPT-CLJ2100-5708

then the BCG contamination is 29% ± 14%. All the miss-identifications are at

z < 0.43. Fig. 5.2 shows the position of the BCGs in the velocity distribution of

the GCs within ±5,000 km s−1. We confirm the BCG membership status when

37
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Figure 5.1: Redshift histograms for the 15 clusters (bin size 0.005). Red bars and inner panels
(bin size 250 km s−1) indicate galaxies within ±5,000 km s−1. Black dashed lines indicate the
position of the BCG.

the velocity of the BCG candidate is within ±3,000 km s−1and discard the BCG

candidates of three clusters (SPT-CLJ0151-5654, SPT-CLJ2358-6129, and SPT-

CLJ0439-5330) as they lie beyond ±5,000 km s−1. But for SPT-CLJ2344-4224

the BCG candidate lies within the latter velocity cut and it is just ∼1,000 km s−1

closer than our membership velocity cut selection. Thereby, we do not confirm its

membership to the cluster, but we do not discard its potential as a candidate.
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Figure 5.2: Peculiar velocity of galaxies inside ±5,000 km s−1 with member galaxies as red bars
(bin size 250 km s−1). The Black dashed line indicate the position of the BCG. Green dashed
line mark 2,500 km s−1. The shaded regions represent 1, 2, and 3σ going from darker to lighter
blue regions and dashed line.

5.2 Dynamical state

Results from the dynamical state tests are shown in Tables 5.2, 5.3, and 5.4.

The tables show values for three velocity cuts, indicating if the distribution is

consistent with a Gaussian distribution (G) or if it is not (NG). They also show

the GMM2D results indicating if 1 or 2 components (the only options) are pre-

ferred. For the ±3,000 km s−1 velocity cut level, 7 clusters are found for at least

one test as disturbed. 4 of the clusters (SPT-CLJ0151-5654, SPT-CLJ0451-4952,

SPT-CLJ0111-5518, and SPT-CLJ0135-5904) show no deviations from relaxation

through all tables 5.2 to 5.4.

We remark that the methods used in this study yield coherent results with

the ones of B16 which also used the AD test to find 9 clusters with α < 0.05. If

we obtain the cluster redshifts and velocity dispersions for the B16 sample using
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the methods in § 4.1, and then run the AD test; there are 10 clusters which

present α values lower than 0.05. From these 10 clusters, 8 are the same with

NG distributions in the B16 results. The small discrepancy is due to the cluster

redshift and velocity dispersion estimation which differs only in the added ±2500

initial velocity cut for low-member clusters. In addition, if we compare these

estimations with the ones of B16 we find good coincidence with differences less

than ∼10%, even in the number of cluster members.

Table 5.2: ±3,000 km s−1 sample dynamical tests results.

AD KS DS GMM2D AD KS DS
SPT-CL N α D∗ p−val. α <0.05 D∗ ≥0.895 p−val.<0.05

J2344-4224 40 0.182516 0.694299 0.5062 2 G G G
J0151-5654 23 0.251492 0.615952 0.8584 1 G G G
J0144-4807 43 0.088039 0.837021 0.5512 1 G G G
J0600-4353 54 0.745519 0.569097 0.0346 1 G G NG
J2358-6129 19 0.325113 0.713851 0.3478 1 G G G
J0451-4952 34 0.311488 0.601306 0.386 1 G G G
J0354-5904 45 0.695421 0.511864 0.487 1 G G G
J0439-5330 37 0.481172 0.450373 0.1312 2 G G G
J0337-4928 36 0.005674 0.958729 0.6378 1 NG NG G
J0111-5518 37 0.584639 0.585253 0.9 1 G G G
J0135-5904 42 0.504057 0.616973 0.3226 1 G G G
J0522-5026 42 0.024253 0.854101 0.088 2 NG G G
J2100-5708 8 0.103107 0.837362 0.766 1 G G G
J0612-4317 30 0.013935 0.884303 0.5366 1 NG G G
J0550-5019 21 0.02625 0.828025 0.893 2 NG G G

Notes. G indicates coincidence with a Gaussian distribution while NG indicates a

non-Gaussian distribution. Strictly speaking, in the case of the DS test, NG indicates
presence of substructure and G for absence of it.

As we discuss in the next chapter, for clusters with perturbations in the LoS

direction the AD test should assess the dynamical state with a high efficiency,

and better than that of KS test, while in the case of mergers in the plane of

the sky GMM2D shall detect the major components. It must be noted that

DS test does not account for deviations from Gaussianity but instead accounts

for presence of substructure. Substructure is an indicative of recent accretion

of galaxies or smaller groups of galaxies (Lacey and Cole, 1993), while on the

other hand, non-Gaussianity would indicate a dynamically complex or unevolved

system (Hou et al., 2013). Thereby, our set of dynamical state tests search for

different types of evidence of disturbance (and its direction) and thus we confirm
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Table 5.3: ±2,500 km s−1 sample dynamical tests results.

AD KS DS GMM2D AD KS DS
SPT-CL N α D∗ p−val. α <0.05 D∗ ≥0.895 p−val.<0.05

J2344-4224 37 1.0 0.514892 0.392 1 G G G
J0151-5654 22 0.066595 0.792054 0.9082 1 G G G
J0144-4807 42 0.080296 0.737004 0.3906 2 G G G
J0600-4353 53 0.449195 0.66074 0.0896 1 G G G
J2358-6129 19 0.325113 0.713851 0.3306 2 G G G
J0451-4952 31 0.662568 0.568768 0.1532 1 G G G
J0354-5904 44 0.389214 0.560436 0.2116 1 G G G
J0439-5330 35 0.834644 0.424484 0.0686 2 G G G
J0337-4928 36 0.005674 0.958729 0.65 1 NG NG G
J0111-5518 35 0.431987 0.754289 0.9618 1 G G G
J0135-5904 42 0.504057 0.616973 0.3276 1 G G G
J0522-5026 39 0.96669 0.484477 0.0756 2 G G G
J2100-5708 7 0.136293 0.700453 0.4516 1 G G G
J0612-4317 29 0.010833 0.924044 0.6544 1 NG NG G
J0550-5019 20 0.043252 0.999082 0.722 2 NG NG G

the disturbed dynamical state of a cluster when at least one of the tests find

evidence of unrelaxation. Also, since Z20 selection is based on the BCG-gas

offset, our sample is biased towards mergers in the plane of the sky.

For the 7 disturbed clusters, we estimated density contour maps from the RCS

galaxy distribution which are shown in Fig. 5.3 along with the AD, GMM2D,

and DS output. We highlight SPT-CLJ0522-5026 as this cluster show clearly

correlated substructure of its spatial and velocity distribution where a merger of

similar scale is apparently happening.
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Table 5.4: ±3σ km s−1 sample dynamical tests results.

AD KS DS GMM2D AD KS DS
SPT-CL N α D∗ p−val. α <0.05 D∗ ≥0.895 p−val.<0.05

J2344-4224 40 0.182516 0.694299 0.5078 2 G G G
J0151-5654 22 0.066595 0.792054 0.9054 1 G G G
J0144-4807 42 0.080296 0.737004 0.3994 2 G G G
J0600-4353 56 0.684491 0.446132 0.1742 1 G G G
J2358-6129 19 0.325113 0.713851 0.3298 1 G G G
J0451-4952 34 0.311488 0.601306 0.3874 1 G G G
J0354-5904 50 0.026859 0.788549 0.412 1 NG G G
J0439-5330 39 0.031602 0.689711 0.182 2 NG G G
J0337-4928 31 0.721301 0.507369 0.5536 1 G G G
J0111-5518 37 0.584639 0.585253 0.9006 1 G G G
J0135-5904 42 0.504057 0.616973 0.3422 1 G G G
J0522-5026 43 0.005491 0.951527 0.2538 2 NG NG G
J2100-5708 7 0.136293 0.700453 0.4342 1 G G G
J0612-4317 30 0.013935 0.884303 0.5428 1 NG G G
J0550-5019 19 0.185549 0.935069 0.379 2 G NG G
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Figure 5.3: Distribution of galaxies in the projected plane for the 7 disturbed clusters together
with contour levels for the numerical density map of RCS galaxies. Circles and diamonds show
galaxies which belong to components found with GMM2D (only circles in the case of just one
component). Centers and standard deviations of components found by GMM2D are noted with
black solid perpendicular lines. The black cross indicate the position of the BCG and the dashed
circle indicate R200. Red and blue shades indicate the velocity of galaxies. The side panel on
every plot shows the velocity distribution with the BCG pointed as a dashed black line and
member galaxies as red filled bars.
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Figure 5.3: (Continued)



Chapter 6

Discussion and conclusions

Massive GC mergers allow us to study a range of phenomena, from particle

physics (e.g., Harvey et al., 2015; Wittman et al., 2017; Fischer et al., 2021) to

cosmology (e.g., Thompson et al., 2015; Bouillot et al., 2015). It is crucial, for

the understanding of the impact of merging processes on the galaxy population,

to assemble a sample that contains clusters in a range of merging states. To draw

high significance results, over a large fraction of the Universe’s life, a mass lim-

ited, nearly redshift independent, and statistically significant sample of disturbed

clusters is ideal. Consequently, methods to accurately determine the dynamical

state of GCs are an important ingredient. In this work we used spectroscopy for

15 GCs, with 14 of them selected by their large BCG to gas (X-ray peak/centroid

or SZ centroid) offset. Our objective is to confirm the BCG candidate member-

ship, to obtain dynamical masses, and use multiple statistical tests to probe the

dynamical state of the clusters. The discussion of our statistical tests results are

presented in the following order: first we discuss the outcome of the dynamical

state tests, then we probe the tests’ efficiency by making numerical simulations

of 3D mergers, and finally we run the dynamical state tests over a large sample

of GCs collected from literature.

6.1 Dynamical state in the LoS: AD and KS test

For the LoS analysis, the AD test finds between 3 and 4 clusters, depending on

the velocity cut, as NG. On the other hand, KS test finds between 1 and 3 clusters.

These low number of detections are not surprising since the sample is biased

towards mergers in the plane of the sky. Thus, 9 clusters through all velocity cut

46
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levels show no evidence of perturbation in the LoS direction. However, it is worth

noticing that clusters with visual signs of a bimodal velocity distribution (see Fig.

5.2), such as SPT-CLJ2344-4224, SPT-CLJ0144-4807, SPT-CLJ0451-4952, and

SPT-CLJ0111-5518 are not classified as NG, while for SPT-CLJ0354-5904 only

for the 3σ velocity cut case this cluster is classified as NG. This suggest that

the AD and KS test are unable to reject the hypothesis of a G distribution with

the current number of galaxies per cluster and the observed velocity separations

in those clusters. If we fit two G distributions to the velocity profile of these

clusters we find that we need at least 70(100) redshifts for the AD(KS) test to

have enough statistical power to give a different classification in the best cases

(i.e. minimum found for all fits; vel. separation of ∼1,300 km s−1 and σ1/σ2=2.39;

see app. A.7). Nevertheless, Hou et al. (2009) demonstrated using Monte Carlo

simulations that the AD test is reliable even for small samples sizes of N<50.

These simulations use 30,000 semi-analytical iterations to probe the skewness

of Gaussian random distributions. Since our simulation intends to resemble a

fusion of two different groups, this suggest that AD test may not discern merging

substructure for the number of member galaxies and velocity separations in our

data but it can reliably detect deviations from Gaussianity for this sample size

regime. Thus, LoS perturbations in our sample, if any, should be detected by the

AD test while mergers in the same orientation relies undetectable for our sample

size regime (<60 member galaxies).

Thereby, for the ±3,000 km s−1 velocity cut level, 4 clusters present evidence of

perturbation: SPT-CLJ0337-4928, SPT-CLJ0550-5019, SPT-CLJ0612-4327, and

SPT-CLJ0522-5026.

6.2 Dynamical state in the spatial direction: GMM2D

The results from GMM2D, which use the galaxy spatial distribution, may

correlate with the Z20 DBCG−SZ offset results. At the ±3,000 km s−1 velocity

cut level, GMM2D finds that 4 clusters SPT-CLJ0522-5026, SPT-CLJ0439-5330,

SPT-CLJ2344-4224, and SPT-CLJ0550-5019 present more than one component in

the sky plane. When looking at Fig. 5.3, these last two clusters (SPT-CLJ2344-

4224 and SPT-CLJ0550-5019) show substructures with less than 5 members as

0Z20 uses all red sequence galaxies, while in this work we use only cluster galaxies spectro-
scopically confirmed
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found by GMM2D. Specifically, the small substructure in SPT-CLJ0550-5019

seems highly uncorrelated in velocity and sky positions. Recommended minimum

sample sizes for ML estimates were formulated by Psutka and Psutka (2019) which

found at 90% confidence level a sample size Ŝ0.90 = 2.5d(d+4), where d is the num-

ber of dimensions. This set the limit to N ≥30 galaxies needed to find confident

results with GMM2D, which is not the case only for SPT-CLJ0550-5019 from the

list of GMM2D disturbed clusters. This suggest that the result found by GMM2D

for this cluster is not a confident result. In the case of SPT-CLJ2344-4224, there

is a small system with 4 galaxies at a median velocity of -199 km s−1 from the

cluster center. The velocity dispersion is 1,151 km s−1but if we remove the closest

galaxy at -2,661 km s−1the velocity dispersion is 233 km s−1. Even if we recognize

this small system as an infalling substructure, the question arises on how many

galaxies must have a substructure to effectively disturb the dynamical state of

a cluster with a certain number of members. As a reference, Hou et al. (2012)

studied methods to classify the dynamical state of GCs by running simulations

where a smaller substructure was accreted into the main cluster. The number of

galaxies they used for this substructure was 10(4) when the main host had 50(10)

members. Anyway, this question could not be answered here as we do not know

how many other galaxies represent these spectroscopic members. Nevertheless,

since the number of members for this cluster provide enough statistical power

for GMM2D to assess the number of components at a 90% confidence level, we

confirm the dynamical state of this cluster as disturbed.

In § 4.2 we forced K to include up to two components. If we let K vary up to

8 components, we find that 4 of the clusters with at least 30 members have more

than one component; 3 of them are the same clusters where GMM2D find exactly

2 components again; and for the forth cluster, SPT-CLJ0612-4317, GMM2D find

7 components. Thus indicating a heavy subclustering in the sky plane which

GMM2D could not approximate to bimodality.

The clusters with unimodal distributions as found by GMM2D through all the

velocity cuts are SPT-CLJ0600-4353, SPT-CLJ0451-4952, SPT-CLJ0354-5904,

SPT-CLJ0337-4928, SPT-CLJ0111-5518, and SPT-CLJ0135-5904. Even when

testing with 8 components, these cluster only show one component. All these

clusters have more than 30 members, thus indicating that subclustering in the

plane of the sky is discarded at a 90% confidence level. This does not discard the

possibility of other forms of perturbations, such as deviations from Gaussianity,
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as GMM2D does not account for deformations in the central distribution.

6.3 3D approach of the dynamical state: DS test

DS test does not find signals of perturbation in the 3D distribution in almost

any cluster in the sample. The only coincidence with a NG distribution (strictly

speaking, detection of substructure in this case) appear in table 5.2 for SPT-

CLJ0600-4353. Hou et al. (2012) showed that DS test strongly depends on the

sample size: It is mainly powerful to detect spatially separated components at

any sample size but for 20<N<50, DS test can detect substructures only if the

central locations are separated in LoS by 2σ; for N>50 it can detect substructures

even within 1σ of separation in LoS; and no matter the host sample size DS test

can not detect substructures with less than 4 galaxies. Furthermore, DS test

is designed to find substructure but not necessarily assess the dynamical state,

thereby it is incomplete (Sifón et al., 2015). Also, there are known mergers where

DS test could not find evidence of substructure (e.g., Menanteau et al., 2012;

Barrena et al., 2013; Jee et al., 2014; Dawson et al., 2015), and most of these are

mergers in the plane of the sky. Since our sample is biased towards mergers in

the plane of the sky and the sample size regime is around 40 galaxy members,

this suggest that DS test may be unsuitable for the velocity separations in our

sample and substructure in the LoS direction remains undetectable for this test.

Nevertheless, SPT-CLJ0600-4353, the only cluster with N>50, may be suffering

mergers preferentially in the LoS while disturbance in the form of subclustering

in the plane of the sky direction is unlikely (as found in § 6.2).

6.4 Simulating 3D mergers

To test the performance of the statistics discussed above, we generated a ran-

dom sample using numpy.random.multivariate normal1 and configure it to re-

semble a distribution of two Gaussian distributions separated by a predefined

offset (see A.8 for details). To find appropriate cluster parameters representa-

tive of our cluster sample we first selected SPT-CLJ0522-5026 as it has multiple

1https://numpy.org/doc/stable/reference/random/generated/numpy.random.

multivariate_normal.html

https://numpy.org/doc/stable/reference/random/generated/numpy.random.multivariate_normal.html
https://numpy.org/doc/stable/reference/random/generated/numpy.random.multivariate_normal.html
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coincidences with NG distributions. But since our sample is at the brink of under-

sampling as discussed in previous sections, this yield unsatisfying results for the

experiment. We want the simulation to be easily detected as perturbed by all

the tests to explore their response to different merger dispositions. Thus, we in-

crease the separations and scales of the configuration resembling an even massive

SPT-CLJ0522-5026-like merger. We use velocity and spatial dispersions of σv =

400 km s−1 and σs = 0.375 Mpc, take separations of dv = 1,200 km s−1 and ds

= 1.2 Mpc, and generate the distribution with N=50 data points. These charac-

teristics are extended into three sets adopting different merger ratios. Table 6.1

shows the configuration sets indicating the number of data points, velocity dis-

persion, and spatial dispersion assigned to each Gaussian component to generate

the distributions as in the example shown in Fig. 6.1.

Table 6.1: Parameter sets for 3D merger simulation.

n σv ( km s−1) σs (Mpc)

Set 1:
D1
D2

25 400 0.375
25 400 0.375

Set 2:
D1
D2

30 475 0.4375
20 325 0.3125

Set 3:
D1
D2

35 550 0.5
15 250 0.25

Notes. Configurations sets for each case: Data points n, velocity dispersion σv,
and spatial dispersion σs assigned to each distribution D1 and D2.

We iterate 100 times for each set, generating the double Gaussian distribu-

tion and estimating the dynamical state statistics each time2. This process is

performed for three different collision angles; we define a collision angle θc in a

manner such that for θc = 0◦ the merger is in the LoS direction (i.e. dv = 1,200

km s−1 and ds = 0 Mpc), for θc = 90◦ the merger is in the projected space direc-

tion (i.e. dv = 0 km s−1 and ds = 1.2 Mpc), and for θc = 45◦ the velocity and

spatial offsets are dv = 1,200/
√

2 km s−1 and ds = 1.2/
√

2 Mpc (thus following a

respective cosine and sine law at 45◦).

The results presented in table 6.2, 6.3, 6.4 consists in the percentage of cases

2For reasons of computing resources the Monte Carlo simulations to estimate the DS p−value
are reduced to 1,000 iterations.
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Figure 6.1: An example of the double Gaussian distribution with config. set 1 and an angle of
45◦.

that a NG distribution is found by each statistic. The results show coherent

behaviors for the LoS and sky plane direction tests as AD and KS show high

efficiency when the merger is in the radial direction while GMM2D assess the

correct number of components when they are in tangential disposition. When

comparing the LoS tests at 0◦ and 45◦, the fraction of NG classifications for AD

test is always higher than the fraction found by KS test. This indicate that

KS test is less efficient at detecting interacting systems than the AD test, which

is in agreement with the findings in literature (Stephens, 1974; D’Agostino and

Stephens, 1986; Hou et al., 2009). Note that the detections of disturbance of KS

test in this study are always accompanied by another test’s detection. This means

that until now the results on perturbed and relaxed clusters in our sample does

not change when ignoring KS test outcome.

In the case of 3D analysis, the DS test show an outstanding rate of detection

when the merger has separations in both directions. Particularly, DS test fails to

correctly classify the dynamical state of the merger when it is oriented specifically

in the LoS or the sky plane direction, and much more so when the merger ratio is

near to a 1:1 merger. When comparing the highest percentages at 90◦ with that

at 0◦, DS test show almost half the percentage of NG classifications with a 27%.

This suggest that DS test has a low efficiency to detect substructure on mergers

oriented in the sky plane direction. This reinforce the discussion hold in § 6.3

that DS test is unsuitable for our sample as it is selected with proxies that denote

spatial disturbance and thus, it is biased towards mergers (or Virial equilibrium

perturbations) in that direction.

These results are in agreement with the results of Hou et al. (2012) which
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Table 6.2: Results of 3D merger simulation. θc=0◦.

θc=0◦ Set 1: 25-25 Set 2: 30-20 Set 3: 35-15
α <0.05 98% 99% 95%
D∗ ≥0.895 90% 89% 77%

DS p−value<0.05 10% 18% 68%
GMM2D N-comp>1 0% 1% 3%

Notes. Dynamical statistics tested with a double Gaussian distribution with
collision angle θc=0◦ (merger in the line of sight). The values indicate the

percentage of NG classifications.

Table 6.3: Results of 3D merger simulation. θc=45◦.

θc=45◦ Set 1: 25-25 Set 2: 30-20 Set 3: 35-15
α <0.05 33% 43% 32%
D∗ ≥0.895 29% 20% 21%

DS p−value<0.05 100% 100% 100%
GMM2D N-comp>1 17% 35% 45%

Notes. Dynamical statistics tested with a double Gaussian distribution with
collision angle θc=45◦. The values indicate the percentage of NG classifications.

presented a similar simulation based on groups of galaxies and showed that the

DS test is significantly more sensitive to separations in the redshift space than to

separations in projected angular position.
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Table 6.4: Results of 3D merger simulation. θc=90◦.

θc=90◦ Set 1: 25-25 Set 2: 30-20 Set 3: 35-15
α <0.05 3% 9% 15%
D∗ ≥0.895 0% 6% 12%

DS p−value<0.05 3% 12% 27%
GMM2D N-comp>1 87% 92% 97%

Notes. Dynamical statistics tested with a double Gaussian distribution with
collision angle θc=90◦ (merger in the plane of the sky). The values indicate the

percentage of NG classifications.

6.5 Dynamical state of 138 galaxy clusters

We collected a large sample of 123 GCs from literature and estimated cluster

redshifts as explained in § 4.1. We run the dynamical state tests on these clusters

and plot the results in figures 6.2 to 6.4 alongside our 15 clusters. The full sample

thus consist of 138 GCs. Fig. 6.2 shows the AD’s α values against the cluster’s

number of members where only 19 of the clusters present evidence of perturbations

on the velocity distribution. Fig. 6.3 show results for KS test where only 15

clusters are NG. Fig. 6.4 is the same figure but showing the DS p−value, indicating

that 21 clusters present evidence of substructure. If we run GMM2D over this

sample the number of components found is equal to two for 4 GCs of our SPT

sample, 5 GCs from the B16 sample, and 9 GCs from the R14 sample. There are no

clusters from the S13 sample that present bimodal projected distributions. Thus,

a total of 18 clusters have a bimodal sky distribution as classified by GMM2D.

In Fig. 6.4 two separate groups of clusters with substructure can be identified:

a group of clusters with N>50 which consist on SPT-CLJ0600-4353, a cluster

from the R14 sample, and 5 clusters from the S13; and a group of clusters with

∼20<N<∼35 which consist on B16 and R14 clusters. In § 6.4 we found that

the effects of merger angle and merger ratio affect the outcome of DS test for

clusters with mergers with certain characteristics. Since we do not know the

separations and ratios of the possible mergers of those clusters with high Nmem,

the bias of DS test suggested by our results may not be reflected for these clusters.

However, GMM2D indeed finds that these clusters have no separable components

in the plane of the sky. Suggesting that DS test may be relying only on velocity

separations to detect substructure. In the case of the group of clusters with low
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number of members, our simulations were not intended for this sample size regime,

but the velocity separation of these clusters should be similar or larger than 2σ,

as found by (Hou et al., 2012). For the cluster with 3 members from the B16, this

cluster has 2 galaxies at less than ±50 km s−1 and one galaxy at 1,122 km s−1.

Clearly, DS test took this high velocity galaxy as a substructure, which is in

discrepancy with the results of Hou et al. (2012) that found that DS test could

never detect substructure with less than 4 members. Finally, a total of 50 clusters

(36%) present evidence of disturbance by at least one of AD, GMM2D, or DS

test (using the ±3,000 km s−1 velocity cut level). There is only one additional

cluster detected only by KS test with evidence of disturbance, thus accounting for

51(37%) GCs.

Figure 6.2: α values for 138 galaxy clusters. Cyan dots indicate 13 clusters from the S13 sample,
green dots are 48 from the R14 sample, blue are 62 from B16, and red dots are the 15 clusters
presented in this paper. The red and lightblue circles mark clusters from the disturbed and the
relaxed sample, respectively.

Table 6.5 shows the percentage of NG clusters found by each test. We find

that a 63% of the clusters are classified as relaxed by the AD, KS, GMM, and
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Figure 6.3: D∗ values for 138 galaxy clusters.

DS tests for our membership selection criteria of ±3,000 km s−1. This percentage

is 62% and 65% for the ±2,500 km s−1 and ±3σ velocity cut levels, respectively.

Thereby, 75(54%) of the clusters are relaxed by all these tests in all velocity cut

levels. The percentage of relaxed clusters found in literature (De Luca et al., 2021,

see Table 5) varies significantly, but our results are in the same limits found by

works of similar sample size (e.g. >100 GCs with a percentage range of 16% -

64%). We highlight the coincidence with the work of Rossetti et al. (2016) who

studied 132 SZ-selected GCs and found that 52% ± 4 of the sample were relaxed

systems.

Table 6.5: Percentage of NG classifications by each criteria for 138 galaxy clusters.

2,500 3,000 3σ
α <0.05 10.9% 13.8% 8.7%
D∗ ≥0.895 8.7% 10.9% 8.7%

GMM2D N-comp=1 18.1% 13.0% 16.7%
DS p−value<0.05 16.7% 15.2% 15.2%
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Figure 6.4: DS p−values for 138 galaxy clusters.

6.5.1 Relaxed sample

From the B16 sample, we identify a counter sample of GCs which are also

classified as relaxed by Z20. For this section, the 13 relaxed GCs observed in

common by B16 and Z20 will be referred as the relaxed sample and the 14 GCs of

our sample selected as disturbed by Z20 will be referred as the disturbed sample.

As a last approach on the functionality of the tests, we discuss the results on the

dynamical state of this counter sample. Table 6.6 shows the cluster parameter

estimations for the relaxed sample. The number of galaxy redshifts per clusters

for this sample is typically less than 35 members, reaching as low as 10 galaxies.
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Table 6.6: Spectroscopy results for 13 Z20 relaxed clusters.

SPT-CLJ Nmem z σ Ma
200,dyn M b

200 Rb200

km s−1 1014M� 1014M� [’]

J2233-5339 29 0.43977 ± 0.000637 710 ± 123 2.89 ± 1.38 8.23 ± 1.47 4.81
J0334-4659 34 0.486338 ± 0.001013 1212 ± 194 12.24 ± 5.39 8.29 ± 1.43 4.48
J0200-4852 35 0.49911 ± 0.000664 794 ± 125 3.8 ± 1.65 7.13 ± 1.35 4.18
J2232-5959 26 0.594737 ± 0.00103 979 ± 180 6.39 ± 3.23 8.39 ± 1.47 3.89
J0033-6326 13 0.597203 ± 0.00176 1282 ± 336 13.37 ± 9.65 7.12 ± 1.33 3.67
J0243-5930 26 0.634493 ± 0.001011 977 ± 179 6.2 ± 3.14 6.92 ± 1.28 3.48
J0542-4100 31 0.639851 ± 0.000993 1022 ± 171 7.0 ± 3.23 7.82 ± 1.42 3.6
J0352-5647 17 0.649071 ± 0.001037 796 ± 183 3.5 ± 2.21 6.41 ± 1.22 3.34
J2222-4834 27 0.651978 ± 0.001019 1018 ± 183 6.87 ± 3.41 8.22 ± 1.41 3.62
J0123-4821 20 0.654903 ± 0.001808 1467 ± 309 18.72 ± 10.86 6.73 ± 1.31 3.38
J0310-4647 28 0.706655 ± 0.000653 624 ± 110 1.74 ± 0.85 6.53 ± 1.26 3.17
J0406-4805 27 0.735608 ± 0.001301 1225 ± 221 10.87 ± 5.39 7.01 ± 1.26 3.16
J0324-6236 10 0.749882 ± 0.000939 520 ± 157 1.02 ± 0.85 7.57 ± 1.32 3.21

Notes. Spectroscopy results for the 13 GCs from the relaxed sample. aDynamical
mass M200,dyn calculated with Munari et al. (2013) formula (eq. 4.1). bMass M200 and

radius R200 extracted from Z20.

In Fig. 6.2 to 6.4 the distributions of the 13 GCs from the relaxed sample

and our 14 GCs from the disturbed sample are indicated with lightblue and red

circles respectively. These results show mostly no correlation or tendency for the

relaxed or disturbed sample. In the case of AD and KS test, this is not surprising

as Z20 selection for candidates relies mostly on sky plane direction proxies such

as the X-ray morphology and the BCG-X-ray offset. There are no expectations

for our relaxed or disturbed candidates to show any kind of convergence with LoS

proxies of the dynamical state. In the case of the DS test, which accounts for a 3D

approach, the relaxed sample show only 1 cluster with evidence of substructure.

Nevertheless, when looking at the continuous distribution of the p−value this

sample show no special distribution in comparison to the disturbed sample. As

explained in § 6.4, this may reflect the high dependence on velocity separations for

the DS test to evaluate disturbance, which may be small in the disturbed sample

and unaccounted for in the relaxed sample.

For the projected space analysis, GMM2D favour a distribution with one com-

ponent through all velocity cut levels for 11 of 13 clusters from the relaxed sample,

and only one cluster showed two components at the ±3,000 km s−1 velocity cut

level. As seen in § 6.2, in the case of the disturbed sample these numbers were 6
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and 4, for one and two-component clusters, respectively. Although the correlation

with Z20 selection for the disturbed sample is not as significantly as expected, a

correlation between GMM2D and the Z20 selection certainly exist for the relaxed

sample. There are 9 of the relaxed clusters that show no evidence of perturbation

by any test through all velocity cut levels. Since we found that 7 of the disturbed

candidates showed evidence of perturbation (4 if only GMM2D), this suggest that

the Z20 selection may be better to select relaxed candidates more than disturbed

ones. However, the number of members of the relaxed sample is in general lower

than 30 galaxies, thus no confident correlation with the Z20 selection of relaxed

candidates can be found. Also, the number of spectroscopic members may be too

low to resemble the 2D distribution of the clusters. If we use GMM2D over the

RCS catalogs taking only galaxies within R200, we find that many of the disturbed

clusters show only one sky projected component, including SPT-CLJ0522-5026.

Since RCS catalogs have hundreds of galaxies, this suggest that their distribu-

tions are too crowded to distinguish any structure and a more rigorous selection

of galaxies from the RCS is needed to probe its distribution.



Chapter 7

Future work

The methods and procedures implemented in this study are the basis to char-

acterize dynamically a larger sample of GCs. We look forward to extend the Z20

study by using optical data from the DECam eROSITA Survey (DeROSITAS)

on 14,000 square degrees and X-ray data from the space telescope eROSITA on

the same area. With this, we will classify the dynamical state of 40,000 GCs and

find more clusters like SPT-CLJ0522-5026 and parameterize in detail the mergers

using Monte Carlo methods with applications such as the Monte Carlo Merging

Analysis Code MCMAC (Dawson, 2013). We will be able to estimate the dynamical

mass of the clusters to measure its impact on the scaling relations of massive merg-

ers and relaxed system. We will use spectral features, such as the D4000 intensity,

to quantify the impact of the merger in the stellar formation of cluster galaxies.

This will allow us to study the properties of galaxy populations like colors, stellar

formation, and morphology to correlate them with the dynamical state, mass,

and redshift. For SPT-CLJ0522-5026 we have already applied the MCMAC routine

to separate the two projected structures found by GMM. The MCMAC method was

developed by Dawson (2013) to discern the properties of dissociative mergers and

propagate the uncertainty of the measured cluster parameters in an accurate and

Bayesian manner. MCMAC gives as a result two different times since collision, TSP0

and TSP1, for an outgoing and an incoming merger, respectively, after the first

pericentric passage. It provides the collision angle of the merger, 3D physical

distances and velocities, and LoS velocity separation of the components. Table

7.1 shows the results characterizing the state of the merger.

In one hand, NG clusters tend to have larger velocity dispersions and thus,

higher dynamical masses (Ribeiro et al., 2011; Old et al., 2018; Morell et al.,

59
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Table 7.1: MCMAC results on SPT-CLJ0522-5026.

Param. Median Unit Description
α 47+10

−11 deg Merger axis angle
d3Dobs 1.62+0.29

−0.41 Mpc 3D distance of the halos at T obs.
d3Dmax 2.06+0.83

−0.34 Mpc 3D distance of the halos at apoapsis.
v3Dcol 2616+188

−134 km/s 3D velocity at collision time.
v3Dobs 847+193

−89 km/s 3D velocity at T obs.
vrad 578+106

−98 km/s Radial velocity of the halos at T obs.
TSP0 0.92+0.29

−0.18 Gyr TSP for outgoing system.
TSP1 2.82+2.12

−0.65 Gyr TSP for incoming system.

2020). However, the velocity distribution of galaxies follow that of dark matter

particles (Faltenbacher and Diemand, 2006; Evrard et al., 2008; Lau et al., 2010),

in exception to the brightest few galaxies (Lau et al., 2010; Wu et al., 2013).

On the other hand, Rines et al. (2016) studied the correlation between SZ and

dynamical masses and found that the observed relation agrees very well with a

simple virial scaling from mass (based on SZ) to velocity dispersion. Furthermore,

SZ masses can overestimate the mass of the cluster when merger perturbations

deviates the structure from relaxation (Gianfagna et al., 2021; Gianfagna et al.,

2021). In this work we estimated dynamical masses and tried to compare their

bias due to dynamical disturbance to that from SZ-based hydrostatic masses.

Although, the results showed coherent tendencies for the relaxed and disturbed

sample, the uncertainties were too large for anything to be settled. Therefore,

these results were discarded. We learn from this study that mergers with different

directions in the sky may show contrasting results depending on the dynamical

classification proxy used. This discouraged the use of a mass based statistic of

dynamical state as they are estimated with methods that are subject to bias from

mergers with different collision angles. However, this also drive us to explore

gravitational lensing methods in the future to measure weak and strong lensing

masses. This will allow us to measure the effect not only of the dynamical state,

but also the merger angle on common methods of mass estimation such as the

dynamical mass and hydrostatic mass.

In future works we also want to pursue a deeper study on the complex al-

location of unrelaxed clusters; massive mergers differ significantly from a simple

double Gaussian fusion where factors like the number of components, the sepa-

ration, the merger ratio or even the membership contamination as well should
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not be obviated. Notice that an interesting example of this can be seen for SPT-

CLJ0337-4928; in Fig. 5.2, the third panel in the right column shows how SPT-

CLJ0337-4928 left out 5 galaxies, in the outskirts of the velocity profile, when

taking a 3σ velocity cut level. The results of AD and KS test at this velocity cut

level find concordance with a G distribution, but also classify this cluster as NG

for any other velocity cut level (the which include these outskirt galaxies). This

suggest that AD and KS test are unable to recognize the visible central double

peak, that has a separation of ∼500 km s−1, as something different than a single

Gaussian distribution. The same happens for SPT-CLJ0550-5019.
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Fischer, M. S., Brüggen, M., Schmidt-Hoberg, K., Dolag, K., Ragagnin, A., and

Robertson, A. (2021). Unequal-mass mergers of dark matter haloes with rare

and frequent self-interactions. Mon. Not. R. Astron. Soc..

Gao, X. (2018). Memberships of the open cluster NGC 6405 based on a com-

bined method: Gaussian mixture model and random forest. The Astronomical

Journal, 156(3):121.

Gianfagna, G., De Petris, M., Yepes, G., De Luca, F., Sembolini, F., Cui, W.,
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López-Cruz, O., Barkhouse, W. A., and Yee, H. K. C. (2004). The Color-

Magnitude Effect in Early-Type Cluster Galaxies. Astrophys. J., 614:679–691.

Lourenço, A. C. C., Lopes, P. A. A., Laganá, T. F., Nascimento, R. S., Machado,
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Garćıa-Bellido, J., Gerdes, D. W., Giannantonio, T., Gruen, D., Gutierrez, G.,

Hinton, S. R., Hollowood, D. L., Honscheid, K., Huff, E. M., Huterer, D., James,

D. J., Jeltema, T., Kuehn, K., Lahav, O., Lidman, C., Lima, M., Lin, H., Maia,

M. A. G., Marshall, J. L., Martini, P., Melchior, P., Miquel, R., Mohr, J. J.,

Morgan, R., Neilsen, E., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez,

E., Scarpine, V., Schubnell, M., Serrano, S., Smith, M., Suchyta, E., Tarle, G.,

Thomas, D., To, C., Varga, T. N., Wechsler, R. H., Weller, J., and Wilkinson,

R. D. (2021). Dark energy survey year 3 results: Photometric data set for

cosmology. The Astrophysical Journal Supplement Series, 254(2):24.

Sifón, C., Hoekstra, H., Cacciato, M., Viola, M., Köhlinger, F., van der Burg, R.
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Appendix A

Pipeline and scripts

This section provides code lines details and instructions for the proceedings

used in this work. Unless stated otherwise, every script is wrote over Python

3.6.13 (default, Jun 4 2021, 14:25:59) environment. In some cases, IRAF pack-

ages are used because we find it more comfortable to use, instead of writing an

entire python script for simple tasks.

A.1 Downloading DES images and catalogs

Access to DES database is private and available only to verified accounts, to

login into https://deslabs.ncsa.illinois.edu/desaccess/ you should first

register following the steps in https://data.darkenergysurvey.org/fnalmisc/

onboard/onboard.html. Once access is granted you should login into the DES

science database (dessci) and see a series of tools, to download the catalogs we use

the DataBase Access tool which allows you to submit your own OracleDB queries

directly to the database. You have to use the query editor to compose your

database SQL query to retrieve tables with the requested columns from different

data releases for a selected sky area.

The following script shows and example used for SPT-CLJ0147-5622, a SPT

cluster included in the observation program.

1 SELECT coadd_object_id,ra,dec,mag_auto_g,magerr_auto_g,mag_auto_r

2 ,magerr_auto_r,mag_auto_i,magerr_auto_i,mag_auto_z,magerr_auto_z

3 ,MOF_PSF_MAG_G,MOF_PSF_MAG_ERR_G,MOF_PSF_MAG_R,MOF_PSF_MAG_ERR_R

4 ,MOF_PSF_MAG_I,MOF_PSF_MAG_ERR_I,MOF_PSF_MAG_Z,MOF_PSF_MAG_ERR_Z

5 ,MOF_BDF_MAG_G_CORRECTED,MOF_BDF_MAG_R_CORRECTED,MOF_BDF_MAG_I_CORRECTED
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6 ,MOF_BDF_MAG_Z_CORRECTED,FLAGS_FOOTPRINT,FLAGS_BADREGIONS,FLAGS_GOLD

7 ,FLAGS_FOREGROUND,EXT_MASH,A_IMAGE,B_IMAGE,THETA_J2000,DNF_ZMC_SOF

8 ,DNF_ZMEAN_SOF,DNF_ZSIGMA_SOF

9 FROM DES_ADMIN.Y6_GOLD_1_1 WHERE

10 (ra > 26.5934910432709 AND ra < 27.3369089567291)

11 AND (dec > -56.58372 AND dec < -56.17208)

Figure A.1: The DES science DB access tool. The right terminal prompts the SQL command
lines where you can check the syntax before submitting the job.

Before submitting a job, you may use the Check syntax to validate your query

syntax to avoid failed jobs due to typos. Also, you can select Quick Query or

specify the output file name to show the resulting table in the web browser or to

download a file containing the results. Note that specifying a custom job name in

the options section can help make it easier to filter the job list on the Job Status

page to find one or more jobs. When the job is submitted, you can download the

table by clicking in the job details in the job status tab.

The .fits images can be downloaded from the same page using the Cutout

Service which allows you to download raw or color image data based on input

coordinates and areal dimensions. First, you have to select the data release tag

associated with the data set you wish to access. In the right panel enter the po-

sitions in the sky that designate the centers of your cutout images in the form of

a CSV-formatted table, with a header row naming the table columns for subse-
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quent lines. Note that each position must be specified using either RA/DEC sky

coordinates or the Coadd tile ID.

These are some examples of the CSV table that are also in the page’s help

section showing different cases:

1 RA,DEC,COADD_OBJECT_ID,XSIZE,YSIZE,COLORS_FITS,RGB_STIFF_COLORS,

2 RGB_LUPTON_COLORS,RGB_MINIMUM,RGB_STRETCH,RGB_ASINH,MAKE_FITS,

3 MAKE_RGB_STIFF,MAKE_RGB_LUPTON

4 46.275669,-34.256000,,0.90,1.30,g,gry;riy,,,,,true,false,true

5 ,,61407409,1.1,0.8,z,,riy,0.9,40.0,11.0,true,,true
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This example shows the minimum columns you must include when specifying

positions only by coordinates:

1 RA, DEC

2 46.275669,-34.256000

or only by Coadd ID

1 COADD_OBJECT_ID

2 61407409

3 61407435

You have to select the FITS format to generate the data files and the bands.

You can select one or both of the color image formats to generate files suit-

able for visual inspection. Two color rendering methods are offered: STIFF and

Lupton. Note that, for the color image format, exactly three color bands must be

selected.

The areal dimensions can be specified in the CSV table by using the columns

XSIZE and YSIZE. Otherwise, you can use the bars in the Cutout Size option to

give a single size (in arcminutes) for all the images. Finally, after submitting the

job and the query is processed, in the job details you will find links to download

each of the FITS files corresponding to the selected bands, the RGB images as

.png files and a .tar.gz compressed file containing all the requested files.
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A.1.1 Donwloading SPT spectroscopic catalogs

The SPT catalogs can be found on the public network in VizieR following

the urls123 or by directly searching their corresponding titles. Before submitting

the query, be sure to select the cluster identifier, RAJ2000, DEJ2000, and redshift

columns. In the preferences panel you can choose the file format for the table. The

same procedure must be used to download the Tables with the clusters coordinates

to 2D and 3D analysis, in the case of B16 sample the tables should also include

the i-band magnitudes for estimation of the relaxation parameter.

A.2 RCS align with saods9

Before entering the official Gemini steps to submit the mask design4, you

should find proper coordinates and position angle for the mask’s frame. This can

be perform by using visualization tools to display RGB images in WCS coordi-

nates. For this purpose we use saods95, the following example is a bash command

line to generate RGB images in logarithmic scale:

1 ds9 -rgb -red SPT-CLJ2228-5828_i.fits -log -z1 1 -z2 2000

2 -green SPT-CLJ2228-5828_r.fits -log -z1 1 -z2 2000

3 -blue SPT-CLJ2228-5828_g.fits -log -z1 1 -z2 2000

Using the Zoom/pan zoom rotate parameters module the position angle and

center coordinates can be monitored. You should use them in a manner so the

highest number of slits can be distributed into cluster galaxies. In our case we also

use the -region "file" option to show the positions of RCS galaxies and BCGs,

where file should be a proper table containing the coordinates and marker pref-

1B16 release: ”Full spectroscopic data release of the SPT-GMOS” in https://vizier.cds.

unistra.fr/viz-bin/VizieR-3?-source=J/ApJS/227/3/table3&-out.max=50&-out.form=

HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-sort=_r&-oc.form=sexa
2R14 release: ”SPT-SZ survey galaxy clusters optical spectroscopy” in https://vizier.

cds.unistra.fr/viz-bin/VizieR-3?-source=J/ApJ/792/45/table3&-out.max=50&-out.

form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-sort=_r&-oc.form=sexa
3S13 release: ”Massive SZE clusters observations with ACT” in https://vizier.cds.

unistra.fr/viz-bin/VizieR-3?-source=J/ApJ/772/25/table8&-out.max=50&-out.form=

HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-sort=_r&-oc.form=sexa
4e.g. here https://gmmps-documentation.readthedocs.io/en/latest/index.html
5https://howtoinstall.co/es/saods9

https://vizier.cds.unistra.fr/viz-bin/VizieR-3?-source=J/ApJS/227/3/table3&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-sort=_r&-oc.form=sexa
https://vizier.cds.unistra.fr/viz-bin/VizieR-3?-source=J/ApJS/227/3/table3&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-sort=_r&-oc.form=sexa
https://vizier.cds.unistra.fr/viz-bin/VizieR-3?-source=J/ApJS/227/3/table3&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-sort=_r&-oc.form=sexa
https://vizier.cds.unistra.fr/viz-bin/VizieR-3?-source=J/ApJ/792/45/table3&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-sort=_r&-oc.form=sexa
https://vizier.cds.unistra.fr/viz-bin/VizieR-3?-source=J/ApJ/792/45/table3&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-sort=_r&-oc.form=sexa
https://vizier.cds.unistra.fr/viz-bin/VizieR-3?-source=J/ApJ/792/45/table3&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-sort=_r&-oc.form=sexa
https://vizier.cds.unistra.fr/viz-bin/VizieR-3?-source=J/ApJ/772/25/table8&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-sort=_r&-oc.form=sexa
https://vizier.cds.unistra.fr/viz-bin/VizieR-3?-source=J/ApJ/772/25/table8&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-sort=_r&-oc.form=sexa
https://vizier.cds.unistra.fr/viz-bin/VizieR-3?-source=J/ApJ/772/25/table8&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-sort=_r&-oc.form=sexa
https://gmmps-documentation.readthedocs.io/en/latest/index.html
https://howtoinstall.co/es/saods9
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erences6.

A.3 Data reduction

A.3.1 Identifying and correcting first end over-scaled spec-

tra

After the wavelength calibration, some of the spectra presented an abnormal

augment at the beginning of the continuum. To correct this we identify spectra

with over-scaled edge features by searching for pixels in the first 1,000Å with

deviations greater than 5σ from the median of the continuum. When a spectra

is identified as over-scaled, we remove all the information before the first pixel

without over-escalation after the (over-escaled) maximum identified in the first

1,000Å.

To cut the first end of over-scaled spectra caused by the flux calibration we

6documentation in https://ds9.si.edu/doc/ref/region.html

https://ds9.si.edu/doc/ref/region.html
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Figure A.2: An example of a first end over-scaled spectra in the left panel. The right panel
shows the same spectra after the correction.

use astropy.io.fits module to handle the 1D spectra. The following code lines

shows a step by step example for a single 1D spectra and should be iterated over

the whole sample: Load the spectra and create a table with the corresponding

wavelength of each pixel. Take the CRVAL1 and CDELT1 keywords values from the

headers, which are the initial wavelength and resolution of the spectra respectively,

to correctly generate the wavelength-pixel relation.

1 from astropy.io import fits

2 from astropy.table import Table

3 import numpy as np

4

5 filename = "spt0439-5330_95_clean.fits" #slit 45(i+50) from second mask from 0439

6 hdul = fits.open(filename)

7 data = hdul[0].data #counts

8 #generate wavelength from

9 #CRVAL1(AA), CDELT1(AA/pixel) and range(len(hdul[0].data))

10 wave = hdul[0].header["CRVAL1"]

11 + ((hdul[0].header["CDELT1"])*np.array(range(len(data))))

12 #make wave table: col0: wavelength, col1: counts

13 spectra = Table([wave,data])

Then, identify if the first end of the spectra is over-scaled by comparing it to

the median characteristics of the whole spectra.

1 climit = 10

2 #take the standard deviation

3 sig = np.std(spectra["col1"])
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4 #create a column with the absolute deviation from the median norm. by sigma

5 spectra["dev"] = abs((spectra["col1"] - np.median(spectra["col1"]))/(sig))

6 #take the first 1000 AA and search if the max peak deviation is there

7 frt = spectra[spectra["col0"]<=hdul[0].header["CRVAL1"]+1000]

8 oscaled = False

9 if np.max(frt["dev"])>=climit and np.max(frt["dev"])==np.max(spectra["dev"]):

10 oscaled = True

The climit is the minimum sigma deviation and is set to 10 since we find it

by visual inspection to be suitable for our case. When an over-scaled spectra is

identified, proceed to find a correct wavelength to cut the affected area.

1 climit2 = 5

2 if oscaled:

3 #histogram of 100 bins of the first 1000AA

4 plt.clf()

5 h = plt.hist(frt[frt["dev"]>=climit2]["col0"]

6 ,bins=int((frt["col0"][len(frt)-1] - frt["col0"][0])/100)

7 ,range=[frt["col0"][0],frt["col0"][len(frt)-1]])

8 #find index position kmax of the highest peak in hist

9 for k in range(len(h[0])):

10 if h[0][k] == np.max(h[0]):

11 kamax = k

12 break

13 #find the first bin after the maximum in kmax which has no over-scalation

14 for k in range(len(h[0])):

15 wvpit = spectra[spectra["col0"] >= h[1][k]]

16 wvpit = wvpit[wvpit["col0"] <= h[1][k+1]]["col1"]

17 if k > kamax and h[0][k]==0 and 0.0 not in wvpit:

18 wvlim = spectra[spectra["col0"] <= h[1][k]] #find the highest wv

19 wvlim = wvlim[wvlim["col0"] >= h[1][k-1]] #with o.s. in the bin

20 wvlim = wvlim[wvlim["dev"] >= climit2]

21 wvlim = np.max(wvlim["col0"])

22 break

23 #find the pixel of that wavelength

24 for k in range(len(spectra)):

25 if spectra["col0"][k] == wvlim:

26 kalim = k

27 break

climit2 is the minimum deviation to identify an over-scalated pixel. Finally,

with wvlim estimated, you can cut the spectra being careful of keep the same



A Pipeline and scripts 89

resolution and correct header keywords (e.g. by using scopy in IRAF or any

similar python module).

Figure A.3: left : Same first end over-scaled spectra of Fig. A.2. right : histogram of over-scaled
pixels in the first end of the continuum. The resulting wvlim in this example is 4660Å.

A.4 Catalogs and BCG matching

To match the BCG coordinates from Z20 to our catalogs we use the match to catalog sky7

task from the astropy.coordinates.SkyCoord module which finds the nearest

on-sky matches of a coordinate in a set of catalog coordinates.

The following script shows the implementation of this task to match the BCG

coordinates tabulated in a latex file to our cluster catalogs.

1 #match BCGs using match_to_catalog (same result as with TOPCAT)

2 #https://docs.astropy.org/en/stable/coordinates/matchsep.html

3 def match(cl_lst,filename):

4 ext = filename.split(".")[1] #file extension

5 #read file with BCG coordinates on literature

6 bcg = Table.read(filename,format=ext)

7 idx_lst = []

8 d2d_lst = []

9 for i in range(len(cl_lst)): #iterate for each cluster

10 cluster = cl_lst[i]

11 #load cluster catalog

12 crt = Table.read("fxcor_"+str(cluster)+"_prom.cat",format="csv")

7https://docs.astropy.org/en/stable/api/astropy.coordinates.match_

coordinates_sky.html#astropy.coordinates.match_coordinates_sky

https://docs.astropy.org/en/stable/api/astropy.coordinates.match_coordinates_sky.html##astropy.coordinates.match_coordinates_sky
https://docs.astropy.org/en/stable/api/astropy.coordinates.match_coordinates_sky.html##astropy.coordinates.match_coordinates_sky
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13 if i==0: #create an auxiliary table to save the data

14 bcg_lst = Table(crt[0])

15 bcg_lst.remove_row(0)

16 #locate correct coordinates in the BCG table

17 sbcg = bcg[bcg["SPT-CL"]=="J"+str(cluster)]

18 #convert to Skycoord coordinate object

19 d = SkyCoord(ra=sbcg["RA"][0]*u.degree,dec=sbcg["DEC"][0]*u.degree)

20 #convert cluster catalog to Skycoord coordinates catalog

21 catalog = SkyCoord(ra=crt["RA"]*u.degree,dec=crt["DEC"]*u.degree)

22 #match bcg to catalog

23 idx, d2d, d3d = d.match_to_catalog_sky(catalog)

24 d2d_lst += [d2d.value[0]*3600] #save 2d separation in arcsec

25 bcg_lst.add_row(crt[idx]) #save best match into aux table

26 #add useful columns (2d sep and cluster id)

27 bcg_lst["Z20 match offset (arcsec)"] = d2d_lst

28 bcg_lst["SPT-CL"] = ["J"+str(clid) for clid in cl_lst]

29 return bcg_lst

The bcg table should contain the ”SPT-CL” column with the ID of the clus-

ters in format ”J2344-4224” as an instance, and coordinates of the correspond-

ing BCGs ”RA” and ”DEC” in degrees. We first run this script to match the

BCGs against all the spectra files, including those rejected in the spectroscopy

process, finding best match separations lower than 1” except for two clusters,

SPT-CLJ2344-4224 and SPT-CLJ0600-4353. Using TOPCAT to corroborate our

results, we get the exact same result finding separations of 57.6” and 25.7” for

these clusters, respectively. Visual inspection of the images revealed that there

was no spectra of the BCG candidates in our tables and so, we decided to use

dedicated time in SOAR/Goodman program to take spectroscopy of the BCG

candidates plus other good candidates.

To match the DES catalogs to our cluster galaxies to get magnitudes we

implement the same python package. Important details to say is that all the

matches have separations lower than 1” and the specific DES magnitude used is

”MOF BDF MAG I CORRECTED” that is the Magneto Optical Filter (MOF)

based magnitude of the Bulge+Disk model.
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Figure A.4: Saods9 RGB displays of cluster galaxies with BCG candidates, SOAR BCG, and the
best match found in our catalogs for both clusters, SPT-CLJ2344-4224 and SPT-CLJ0600-4353.

A.5 Cluster redshifts and dynamical masses

The following script lines come from the zcluster definition which we use to

estimate the cluster redshifts and dynamical masses of the clusters. This task in-

volves several python libraries including many astropy modules, also matplotlib,

numpy, and uncertainties.ufloat. The installation of any python library should

be done via pip8.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from astropy.table import Table

4 import astropy.stats as st

5 from astropy.constants import c

6 from astropy import units as u

7 from astropy.cosmology import FlatLambdaCDM

8 from uncertainties import ufloat

9 #

10 c = c.to(u.km/u.s).value

11 cosmo = FlatLambdaCDM(H0=68.3,Om0=0.299) #Bocquet et al. 2015 cosmology

12 #

To handle the redshifts of the galaxies notice that fxcor measure log(z + 1),

8https://pypi.org/project/pip/

https://pypi.org/project/pip/
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then calculates the velocity as c(10( log(z+1))−1) = cz, and finally it multiples for

the corresponding factor to estimate relative, observed and heliocentric velocities

(Alpaslan, 2009).

1 cl_lst = ["2344-4224","0151-5654","0144-4807","0600-4353","2358-6129"

2 ,"0451-4952","0354-5904","0439-5330","0337-4928","0111-5518"

3 ,"0135-5904","0522-5026","2100-5708","0612-4317","0550-5019"]

4 for r in range(len(cl_lst)): #iterate on every cluster

5 plt.clf()

6 cluster = cl_lst[r]

7 #load cluster catalog

8 crt = Table.read(path+"fxcor_"+str(cluster)+"_prom.cat",format="csv")

9 x = crt["VEL_HEL"]

10 x = np.array(x,dtype="float64")

11 x.sort()

12 x = x/c #to get redshifts make VEL_HEL/c

Then, to get the initial guess on the cluster redshift we generate an histogram

of bin size 0.005 and take the center of the bin with the highest peak.

1 #------hist--------#

2 binval = 0.005

3 upper = (np.around((x[len(x)-1]/binval))+1)*binval

4 lower = (np.around(x[0]/binval)-1)*binval

5 nbin = int(np.around((upper-lower)/binval))

6 h = plt.hist(x,bins=nbin,range=(lower,upper))

7 #-----zpeak--------#

8 for i in range(len(h[0])):

9 if h[0][i] == max(h[0]):

10 lo = h[1][i]

11 up = h[1][i+1]

12 zpeak = (lo+up)/2

This way we can take all the galaxies within ±5,000 km s−1 (or ±2,500 km s−1,

see § 4.1) and improve the estimate of the central location by iterating the biweight

location estimator, which is usually rapid and require only a few steps (Beers et al.,

1990).
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1 #---5,000km/s_cut----#

2 initcut = 5000 #5,000 kms initial cut

3 zcl = zpeak

4 #Danese, L., de Zotti, G., & di Tullio, G. 1980, A&A, 82, 322

5 crt["PEC_VEL"] = (((crt["VEL_HEL"]/c) - zcl)/(1+zcl))*c

6 #----peculiar velocities and velocity cut

7 clip = crt[abs(crt["PEC_VEL"]) <= initcut]

8 if len(clip)<=15:

9 hinit = initcut/2 #2,500 kms

10 clip = crt[abs(crt["PEC_VEL"]) <= hinit]

11 #---initial_biweight_iteration---#

12 for l in range(3):

13 zcl = st.biweight_location(clip["VEL_HEL"]/c,M=np.array([zcl]))

14 #improve initial guess before 3sigma clipping (Beers et al. 1990)

Finally, we use the 3σ-clipping method to find a final redshift. The following

script lines come from the zcluster definition which we use to estimate the cluster

redshifts and dynamical masses of the clusters.

1 #---sigma_clippping------#

2 while True:

3 #---cluster redshift

4 zcl = st.biweight_location(clip["VEL_HEL"]/c,M=np.array([zcl]))

5 #----update PEC_VEL

6 clip.remove_column("PEC_VEL")

7 clip["PEC_VEL"] = (((clip["VEL_HEL"]/c) - zcl)/(1+zcl))*c

8 #---Sigma Biweight

9 sigma_bi = st.biweight_scale(clip["PEC_VEL"],M=np.array([0.0]))

10 #-----------------Sigma Gapper (as Hou et al. 2009)

11 clip.sort("PEC_VEL")

12 n = len(clip)

13 p = []

14 for l in range(1,n): #l=1,...,n-1

15 w = l*(n-l)

16 g = clip["PEC_VEL"][l] - clip["PEC_VEL"][l-1]

17 p += [w*g]

18 sigma_g = (np.sqrt(np.pi)*np.sum(p))/(n*(n-1))

19 #-----sigma to use depending on memebers (Bayliss et al 2016)

20 if n >= 15:

21 sigma = sigma_bi

22 elif n < 15:
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23 sigma = sigma_g

24 #----rejected_galaxies

25 rej = clip[abs(clip["PEC_VEL"]) >= (s*sigma)]

26 #---when there are no rejected galaxies end the iteration and

27 #calculate sigma error

28 if len(rej) == 0:

29 #Ruel, J., Bazin, G., Bayliss, M., et al. 2014, ApJ, 792, 45

30 sigma_err = 0.92*sigma/np.sqrt(len(clip)-1)

31 if sigma == sigma_g:

32 sigma_err = 0.91*sigma/np.sqrt(len(clip)-1)

33 break

34 #---if len(rej)!=0 then cut in s*sigma and start over again

35 clip = clip[abs(clip["PEC_VEL"]) <= (s*sigma)]

36 #----uncertainty

37 zcl_err = np.std(clip["VEL_HEL"]/c)/np.sqrt(len(clip))

38 #---update pec velocities on the crate, then save

39 crt.remove_column("PEC_VEL")

40 crt["PEC_VEL"] = (((crt["VEL_HEL"]/c) - zcl)/(1+zcl))*c

41 crt.write(path+"fxcor_"+str(cluster)+"_prom.cat",format="csv"

42 ,overwrite="True")

43 ns3 = len(clip) #---how many galaxies survive the 3 sigma clipping

44 #(not the same as member galaxies)

This in return provides the cluster redshift zcl, its uncertainty zcl err, ve-

locity dispersion sigma and its uncertainty sigma err. Finally, to estimate the

dynamical masses we use Bocquet et al. (2015) cosmology on the scaling relation

calibrated by Munari et al. (2013).

1 #------dynamicalmass---------#

2 hz = cosmo.H(z=zcl).value /100

3 ######################

4 #Munari et al. 2013

5 A = ufloat(1177,4.2)

6 munalpha = ufloat(0.364,0.002)

7 sss = ufloat(sigma,sigma_err) #1D velocity dispersion

8 Mdynu = (((sss/A)**(1/munalpha))*10)/hz #*1e14 Msun

9 Mdyn = Mdynu.nominal_value #dynamical mass

10 Mdyn_err = Mdynu.std_dev #uncertainty
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A.6 Dynamical state indicators

A.6.1 AD and KS test

To perform this task we execute the module normal ad from the python pack-

age statsmodels on the proper velocities of member galaxies for each cluster.

The package normal ad9 takes an array of ordered values to return A2. For the

array data x the python syntax is

1 from statsmodels.stats.diagnostic import normal_ad

2 import numpy as np

3

4 aa, paa = normal_ad(np.sort(x))

where aa is the A2 statistic. This value is then used to calculate equations 4.2

and 4.3.

1 a, b = 3.6789468, 0.1749916 #Nelson et al. 1998

2 aastar = (aa)*(1+(0.75/len(x)) + (2.25/(len(x)**2)))

3 alpha_ad = a*np.exp(((-1)*aastar)/b)

4 if alpha_ad > 1: #dont care about alpha >1 so here I limit it to 1

5 alpha_ad = 1

This in return provide the α statistic alpha ad capped to 1.

For KS test, we use the module lilliefors10 from the same python package.

This will calculate the D statistic which is then used to calculate eq. 4.7. For the

array data x the python syntax is

1 from statsmodels.stats.diagnostic import lilliefors as liltest

2

3 D, pD = liltest(np.sort(x),dist="norm",pvalmethod="table")

4 Dstar = D*(np.sqrt(len(x)) - 0.01 + (0.85/np.sqrt(len(x))))

9https://www.statsmodels.org/stable/generated/statsmodels.stats.diagnostic.

normal_ad.html
10https://www.statsmodels.org/stable/generated/statsmodels.stats.diagnostic.

lilliefors.html

https://www.statsmodels.org/stable/generated/statsmodels.stats.diagnostic.normal_ad.html
https://www.statsmodels.org/stable/generated/statsmodels.stats.diagnostic.normal_ad.html
https://www.statsmodels.org/stable/generated/statsmodels.stats.diagnostic.lilliefors.html
https://www.statsmodels.org/stable/generated/statsmodels.stats.diagnostic.lilliefors.html
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This in return provides the D∗ statistic.

A.6.2 Gaussian Mixture Modelling

GaussianMixture11 is a module from the package sklearn.mixture that

makes a representation of a Gaussian mixture model probability distribution to

estimate the parameters of a Gaussian mixture distribution. We use this module

taking diagonal covariance matrices for each component. Also, this module is

fully scalable to 3 dimensional analysis and we tried to add the velocity phase

space together with the sky plane positions, this scenario requires a normalization

of the parameters to avoid differences in magnitudes or scales of the attributes of

the measures (Gao, 2018), but this configuration yield inconsistent results and so

we decided to use it only for sky plane analysis.

To work the sky plane coordinates we first convert the sky positions of the galaxies

into 2D physical positions. For this, we set the Bocquet et al. (2015) cosmology

and then estimate separations, from the center of the cluster in Mpc, by assuming

that all the galaxies are at the same redshift as the cluster redshift.

1 import numpy as np

2 from astropy.table import Table

3 from astropy.cosmology import FlatLambdaCDM

4 cosmo = FlatLambdaCDM(H0=68.3,Om0=0.299) #Bocquet et al. 2015 cosmology

5

6 cluster = "2344-4224"

7 velcut=3000

8 crt = Table.read("fxcor_"+cluster+"_prom.cat",format="csv") #load catalog

9 clip = crt[abs(crt["PEC_VEL"])<=velcut] #membership selection

10 coocl = Table.read("clcenter_z20.latex",format="latex") #load table with Z20 centers

11 #take ra,dec of the corresponding center from Z20

12 ra = float(coocl[coocl["SPT-CL"]=="J"+str(cluster)]["RA"][0])

13 dec = float(coocl[coocl["SPT-CL"]=="J"+str(cluster)]["DEC"][0])

14 #convert center and catalog coordinates to SkyCoord object

15 d = SkyCoord(ra*u.degree,dec*u.degree)

16 catalog = SkyCoord(ra=clip["RA"]*u.degree,dec=clip["DEC"]*u.degree)

17 #position angle of catalog galaxies with respect to center

18 pa = d.position_angle(catalog)

19 lst = d.separation(catalog).to(u.arcsec) #separation in arcsec

11https://scikit-learn.org/stable/modules/generated/sklearn.mixture.

GaussianMixture.html

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
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20 #angular diameter distance at cluster redshift

21 d_A = cosmo.angular_diameter_distance(z=zcl)

22 distance_Mpc = (lst*d_A).to(u.Mpc,u.dimensionless_angles()) #distance in Mpc

23 #X, Y coords in Mpc of each galaxy centered on the cluster center

24 Y = distance_Mpc*np.cos(pa)

25 X = distance_Mpc*np.sin(pa)

26 clip["PRJ_SEP"] = distance_Mpc #save to clip

27 clip["X"] = X

28 clip["Y"] = Y

29 clip["PA"] = pa

This example for SPT-CLJ2344-4224 member galaxies (i.e. within ±3,000 )

calculates X, Y distances in Mpc to the center of the cluster. We then generate

a suitable array for GaussianMixture to process, a list of K modes and run the

module.

1 import numpy as np

2 from astropy.table import Table, join

3

4 cmp=2 #maximum number of K modes

5 #generate 2D array with coordinates

6 points = np.array([np.array(clip["X"]),np.array(clip["Y"])])

7 points = points.T

8 N = np.arange(1, cmp+1) #array 1,2,...,K

9 #GMM for each K model

10 models = [None for k in range(len(N))]

11 for k in range(len(N)):

12 models[k] = GaussianMixture(n_components=N[k],covariance_type="diag").fit(points)

13 BIC = [m.bic(points) for m in models] #take BIC of the models

14 gmmtab = Table([BIC,N]) #tabulate BIC with K model

15 gmmtab.sort("col0")

16 #take diff between first and second best model

17 delta_bic = abs(gmmtab["col0"][0] - gmmtab["col0"][1])

18 #take K of the best model

19 N2_BIC = int(gmmtab[gmmtab["col0"]==np.min(gmmtab["col0"])]["col1"])

This provides the number of 2D components N2 BIC when considering up to 2

main components. The next script shows how to extract useful data from the fit

to make the figures in 5.3.
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1 best_gmm = models[N2_BIC-1] #select best model

2 #-----take labels, centers, and sigmas of each group in the model

3 labs = best_gmm.predict(points)

4 labs = Table(np.reshape(np.array(labs),[len(labs),1])) #reshape to column like array

5 centers = best_gmm.means_ #centers of the components

6 sigmas_lst = np.sqrt(best_gmm.covariances_) #take spatial Mpc dispersion of each mode

7 clip["gmmlabels"] = labs["col0"] #save labels of mode membership: 0,1,...,K-1

8 #save centers and X, Y sigmas of the corresponding component for each galaxy

9 X_lst = []

10 Y_lst = []

11 Xsig_lst = []

12 Ysig_lst = []

13 for k in range(len(clip)):

14 X_lst += [centers[clip["gmmlabels"][k]][0]]

15 Y_lst += [centers[clip["gmmlabels"][k]][1]]

16 Xsig_lst += [sigmas_lst[clip["gmmlabels"][k]][0]]

17 Ysig_lst += [sigmas_lst[clip["gmmlabels"][k]][1]]

18 clip["gr_X"] = X_lst

19 clip["gr_Y"] = Y_lst

20 clip["grsig_X"] = Xsig_lst

21 clip["grsig_Y"] = Ysig_lst

22 clip.write("gmm2dlabs_"+str(cluster)+"_"+str(velcut)+".csv",format="csv"

23 ,overwrite=True)

These proceedings are then iterated for each cluster and velocity cut level.

A.6.3 DS test and Monte Carlo method

DS test analyze the the spatial distribution of galaxies estimating ∆/N by

considering the spatial and velocity distribution of the galaxies. The p−value is

estimated by using Monte Carlo methods. For the cluster SPT-CLJ2344-4224 at

redshift zcl with velocity dispersion sigma, the following scripts dictates how we

esimate the DS p−value for the member galaxies of this cluster.

1 import numpy as np

2 from astropy.table import Table

3

4 cluster = '2344-4224' #cluster ID

5 zcl = 0.282384 #cluster redshift

6 sigma = 906 #velocity dispersion
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7 velcut = 3000 #velocity cut level

8 crt = Table.read(path+"fxcor_"+str(cluster)+"_prom.cat",format="csv") #load catalog

9 clip = crt[abs(crt["PEC_VEL"])<=velcut] #velocity cut

10 #------Dressler-Shectman test-------#

11 # Einasto et al. (2012)

12 X = clip

13 cz = X["PEC_VEL"] #take peculiar velocities

14 cz = np.array(cz,dtype="float")

15 N = len(X) #sample size

16 n = int(round(np.sqrt(N))) #<-----Pinkney et al. (1996)

17 #locate n nearest neighbors of each galaxy

18 X['index'] = [ np.empty( (n,) ).tolist() ] * N

19 for (p, j, id) in zip(np.array(X["X"]), np.array(X["Y"]), np.arange(len(X["index"]))):

20 galsky = np.sqrt((X["X"] - p)**2 + (X["Y"] - j)**2)

21 idx_lst = galsky.argsort()

22 #save array of indexes of the neighbors for each galaxy

23 X["index"][id] = list(idx_lst[1:n+1])

24 delta = []

25 for k in X["index"]: #iterate for each group of neighbors

26 cz_local = cz[np.array(k,dtype="int")] #take peculiar velocities

27 delta += [((n+1)/(sigma**2)) * ((cz_local.mean())**2

28 + (cz_local.std() - sigma)**2)]

29 delta_original = np.sqrt(np.array(delta)).sum()

Then to estimate the p−value,

1 import random

2 import os

3

4 #Monte Carlo shuffling definition

5 def montecarlo(data, output, sigma):

6 cz = np.array(data["PEC_VEL"])

7 N = len(data)

8 n = int(round(np.sqrt(N)))#<-----Pinkney et al. (1996)

9 random.shuffle(cz) #now we shuffle the velocities keeping the coordinates

10 delta = []

11 for i in data['index']: #iterate over shuffled velocities

12 cz_local = cz[np.array(i,dtype="int")] #take s. velocities of the neighbors

13 delta += [((n+1)/(sigma**2)) * ((cz_local.mean()**2)

14 + (cz_local.std() - sigma)**2)]

15 output.put(np.sqrt(np.array(delta)).sum())

16



A Pipeline and scripts 100

17 try: #------create directory for temp files

18 os.makedirs('DSTEST/dstest')

19 except Exception as error:

20 #directory already exists

21 pass

22 for k in range(50): #make montecarlo 5,000 iterations (50x100)

23 output = mp.Queue()

24 processes= [mp.Process(target=montecarlo, args=(X[['PEC_VEL', 'index']], output,

25 sigma)) for l in range(100)]

26 for p in processes:

27 p.start()

28 for p in processes:

29 p.join()

30 pickle.dump(np.array([output.get() for p in processes])

31 ,open('DSTEST/dstest/\%s_\%s.out'\%(str(cluster), k),'wb'))

32 data = np.array([])

33 for k in range(50):

34 data = np.append(data, pickle.load(open('DSTEST/dstest/\%s_\%s.out'\%(str(cluster)

35 , k), 'rb')))

36 #----fraction of elements above the value of the original delta (Hou et al 2009)

37 pds = len(data[ data>delta_original])/len(data)

We then iterate over the clusters to find each pds. When estimating the

p−value for the 138 SPT clusters we only use 1,000(20x50) iterations to save

computation time.

A.7 Sample size statistics for 1D dynamical tests

The following series of scripts dictates how we find the minimum number of

galaxies for AD and KS test to work efficiently in a bimodal distribution scenario

with scales and parameters extracted from our clusters.

First, we fit a double Gaussian distribution via least-square fitting of the velocity

profile.

1 import numpy as np

2 from astropy.table import Table

3 from lmfit import Model

4 #

5 def double_gaussian(X, amp1, mu1, sig1, amp2, mu2, sig2):

6 return (amp1 * np.exp(-((X-mu1)**2)/(2*(sig1**2))))
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7 + (amp2 * np.exp(-((X-mu2)**2)/(2*(sig2**2))))

8 #

9 cluster = '2344-4224' #cluster ID

10 binval= 250 #bin size 250 km/s

11 models = []

12 gsep = []

13 ratlst = []

14 crt = Table.read("fxcor_"+cluster+"_prom.cat",format="csv") #load catalog

15 crt = crt[abs(crt["PEC_VEL"])<=3000] #only member galaxies

16 gmodel = Model(double_gaussian) #initializate double gaussian model

17 #generate an histogram

18 x = np.array(crt["PEC_VEL"])

19 x.sort()

20 binval = 250

21 upper = (np.around((x[len(x)-1]/binval))+1)*binval

22 lower = (np.around(x[0]/binval)-1)*binval

23 nbin = int(np.around((upper-lower)/binval))

24 plt.clf()

25 h = plt.hist(x,bins=nbin,range=(lower,upper))

26 #fit model to histogram (initial guess values found by visual inspection)

27 params = gmodel.make_params(amp1=6, mu1=750, sig1=400, amp2=6, mu2=-750, sig2=400)

28 result = gmodel.fit(h[0], params, X=(h[1]+(binval/2))[:-1])

29 models += [result]

Although, fitting the model to a discrete representation (an histogram with

bin size equal to 250 km s−1) of the density distribution may seem odd, this reso-

lution is indeed enough for lmfit to find a coherent representation of the distri-

bution with the initial guess parameters that we found by visual inspection. We

use this method for all the selected clusters with a visually noticeable bimodal

distribution (SPT-CLJ2344-4224, SPT-CLJ0144-4807, SPT-CLJ0451-4952, and

SPT-CLJ0111-5518, and SPT-CLJ0354-5904. See Fig. 5.2). Fig. A.5 shows the

best fit found for SPT-CLJ2344-4224 with this configuration.

From these functions we randomly generate distributions increasing the num-

ber of data points N up to 100 in ten different sets (N=10,20,...,100). We iterate

each set 100 times and estimate the AD and KS test each time.

1 from statsmodels.stats.diagnostic import normal_ad

2 from statsmodels.stats.diagnostic import lilliefors as liltest

3 #

4 res = np.array(models[0].params) #select model
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Figure A.5: Best Double Gaussian fit found by lmfit to the velocity profile of SPT-CLJ2344-
4224.

5 gsep += [abs(res[1]-res[4])] #calculate separation of the Gaussians

6 ratlst += [abs(res[2] / res[5])] #calculate sig1 / sig2

7 nran = [10,20,30,40,50,60,70,80,90,100] #initialization of sets

8 p_lst = []

9 d_lst = []

10 for N in nran:

11 ad_lst = []

12 ks_lst = []

13 for iter in range(100): #iterate 100 times for each set

14 #distribute data points weighted by sigma ratio n_1/sigma_1 = n_2/sigma_2

15 n1=int(np.around((N / (abs(np.around(res[2],0))

16 + abs(np.around(res[5],0))))*abs(np.around(res[2],0))))

17 n2=int(np.around((N / (abs(np.around(res[2],0))

18 + abs(np.around(res[5],0))))*abs(np.around(res[5],0))))

19 #generate Gaussians and stack them

20 gdist1 = np.random.normal(res[1],abs(res[2]),n1)

21 gdist2 = np.random.normal(res[4],abs(res[5]),n2)

22 gdist = list(gdist1) + list(gdist2)
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23 ##########AD#############

24 x = gdist

25 a,b = 3.6789468, 0.1749916

26 aa, paa = adtest(np.sort(x))

27 aastar = (aa)*(1+(0.75/len(x)) + (2.25/(len(x)**2)))

28 alpha_ad = a*np.exp(((-1)*aastar)/b)

29 if alpha_ad > 1:

30 alpha_ad = 1

31 ad_lst += [alpha_ad]

32 #######KS#######

33 D, pD = liltest(np.sort(x),dist="norm",pvalmethod="table")

34 Dstar = D*(np.sqrt(len(x)) - 0.01 + (0.85/np.sqrt(len(x))))

35 ks_lst += [Dstar]

36 #take fraction of NG classifications

37 p_lst += [len(np.array(ad_lst)[np.array(ad_lst)<0.05])/len(ad_lst)]

38 d_lst += [len(np.array(ks_lst)[np.array(ks_lst)>0.895])/len(ks_lst)]

39 rakt = Table(np.array([cluster]+p_lst),names=["N"]+nran)

40 rakt2 = Table(np.array([cluster]+d_lst),names=["N"]+nran)

Finally, these python command lines are iterated for SPT-CLJ2344-4224, SPT-

CLJ0144-4807, SPT-CLJ0451-4952, SPT-CLJ0111-5518, and SPT-CLJ0354-5904.

The fraction of NG classifications for each set is shown in Table A.1, the last two

columns in this table show the separation between the center of both Gaussian dis-

tributions d and the ratio of their velocity dispersions σ1/σ2. To populate the com-

ponents with data points we weight using this ratio following that n1/n2 = σ1/σ2,

where n1 and n2 are the data points assigned to each Gaussian. As expected,

while the number of data points increase in each set the fraction of NG classifica-

tions increase as the test’s statistical power scales with sample size. The earliest

set in which the fraction of NG classifications reach a 90% rate of detection is

for the distribution function of SPT-CLJ0144-4807. This suggest that at least

70(100) galaxy members are needed by AD(KS) to safely discriminate a bimodal

distribution with a separation of ∼1300 km s−1 and a presumably merger ratio of

∼2 and we expect this number to be higher for shorter separations.
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Table A.1: Fraction of NG classifications

SPT-CL 10 20 30 40 50 60 70 80 90 100 d ( km s−1) σ1/σ2

J2344-4224
AD 0.07 0.06 0.14 0.16 0.32 0.48 0.5 0.74 0.63 0.74
KS 0.06 0.05 0.12 0.15 0.21 0.26 0.35 0.44 0.5 0.48

1083 1.61

J0144-4807
AD 0.05 0.15 0.45 0.51 0.66 0.81 0.94 0.92 0.99 0.98
KS 0.07 0.09 0.21 0.32 0.55 0.67 0.8 0.86 0.85 0.91

1299 2.39

J0451-4952
AD 0.02 0.1 0.24 0.25 0.39 0.57 0.58 0.65 0.74 0.79
KS 0.04 0.06 0.15 0.14 0.22 0.35 0.39 0.45 0.58 0.62

1127 2.40

J0111-5518
AD 0.05 0.17 0.32 0.49 0.69 0.86 0.85 0.94 0.97 0.96
KS 0.04 0.1 0.24 0.33 0.48 0.65 0.71 0.86 0.89 0.92

1632 1.77

J0354-5904
AD 0.08 0.16 0.14 0.27 0.35 0.42 0.56 0.69 0.67 0.87
KS 0.06 0.08 0.1 0.08 0.17 0.29 0.27 0.3 0.62 0.62

1554 4.04

Notes. Fraction of NG classifications with AD and KS for visually selected
bimodal clusters for each set (app. A.7). The last two columns indicate the
separation between the center of both Gaussian distributions d in km s−1 and
the ratio of their velocity dispersions σ1/σ2.

A.8 Statistics for 2D dynamical tests

1 ###########config##########

2 offsetesp = 1.2

3 #offsetespra = offsetesp*np.cos(np.pi/4)

4 #offsetespdec = offsetesp*np.sin(np.pi/4)

5 n1 = [25,30,35]

6 n2 = [25,20,15]

7 offset = 1200

8 sigma1 = [400,475,550]

9 sigma2 = [400,325,250]

10 sigmaesp1 = [0.375,0.4375,0.5]

11 sigmaesp2 = [0.375,0.3125,0.25]

12 niter = 100

13 cmp = 2

14 ang = 0

15 #############################

16

17 crt_lst = []

18 for nd in range(3):
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Figure A.6: Example samples generated for angle 0, 45, and 90.

19 Dstar_lst = []

20 alpha_ad_lst = []

21 pds_lst = []

22 N2_BIC_lst = []

23 for i in range(niter):

24 ###########3D_Double_Gauss#########

25

26 pos_matrix1 = [-(offset/2)*np.cos(ang*np.pi/180)

27 ,-(offsetesp/2)*np.sin(ang*np.pi/180),0]

28 cov_matrix1 = [[(sigma1[nd])**2,0,0]

29 ,[0,(sigmaesp1[nd])**2,0],[0,0,(sigmaesp1[nd])**2]]

30 D1 = np.random.multivariate_normal(np.array(pos_matrix1),np.array(cov_matrix1)

31 ,size=int(n1[nd]))

32 pos_matrix2 = [(offset/2)*np.cos(ang*np.pi/180)

33 ,(offsetesp/2)*np.sin(ang*np.pi/180),0]

34 cov_matrix2 = [[(sigma2[nd])**2,0,0]

35 ,[0,(sigmaesp2[nd])**2,0],[0,0,(sigmaesp2[nd])**2]]

36 D2 = np.random.multivariate_normal(np.array(pos_matrix2),np.array(cov_matrix2)

37 ,size=int(n2[nd]))

38 x3 = np.vstack((D1,D2))

This will generate the double Gaussian distribution depending on the value

for ang. Notice that the collision direction is always in the velocity-X axis plane.

Fig. A.6 show us an example of this.

We then estimate the dynamical statistics each time (see app. A.6) and save
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them into alpha ad lst, Dstar lst, DSp lst, and N GMM2D lst. Then, when the

100 iterations ends, take the fraction of NG classifications in each array.

1 nerm = np.array([len(Dstar_lst[Dstar_lst>=0.895])

2 ,len(alpha_ad_lst[alpha_ad_lst<0.05])

3 ,len(DSp_lst[DSp_lst<=0.05])

4 ,len(N_GMM2D_lst[N_GMM2D_lst>1])])

5

6 crt_lst += [nerm]

This will estimate the number of NG classifications by each statistic for each

set and save them into crt lst. This process is then iterated for the angles 0◦,

45◦, and 90◦.
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