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Resumen

Las Galaxias Lopsided son galaxias de tipo tard́ıo, las cuales tienen un disco

galáctico asimétrico. Este fenómeno es causado por una distribución irregular de

su masa estelar o en su luz. A pesar de ser una perturbación relativamente común,

aun hay varias preguntas sin responder, en especial con respecto a su origen y la

información que se puede extraer con respecto a la historia de formación de galax-

ias de tipo tard́ıo.

Con la llegada de varios surveys fotométricos de multi-banda, se podrá estudiar

estadisticamente esta perturbación, con información que no estaba disponible pre-

viamente. Considerando la fuerte correlación entre lopsidedness y las propiedades

estructurales de galaxias de tipo tard́ıo, esta tesis busca en desarrollar un método

de clasificación automática entre galaxias que muestran esta perturbación y galax-

ias con un disco mas simétrico. Ademas, buscamos explorar si esta clasificación

se puede obtener considerando solo propiedades internas, sin información con re-

specto al ambiente en donde se ubican estas galaxias.

Para esto, seleccionamos una muestra de aproximadamente 8,000 galaxias de

tipo tard́ıo de la simulación de IllustrisTNG, TNG50. Realizamos una decom-

posicion de Fourier a la densidad superficial de la masa estelar para previamente

catalogar nuestra muestra entre lopsided o simétrica. Con esto, entrenamos

y testeamos un clasificador obtenido de el algoritmo de aprendizaje automati-
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zado, Random Forest, en donde solo utilizamos información con respecto a las

propiedades internas de las galaxias, sin información sobre el ambiente. Explo-

ramos distintos algoritmos para poder lidiar con el desbalanceo de nuestra muestra

(65% son galaxias lopsided), seleccionando el mejor basándonos en métricas se-

leccionadas.

Mostramos que el algoritmo seleccionado provee una clasificacion de galaxias

lopsided bastante precisa y rápida. Estos excelentes resultados obtenidos uti-

lizando solo las propiedades internas de las galaxias, están de acuerdo con la

hipótesis de que esta perturbación es un tracer de la estructura interna de la

galaxia. Ademas, mostramos que resultados similares pueden ser obtenidos con-

siderando como input caracteŕısticas observables de estas galaxias, obtenidas me-

diante surveys fotométricos de multi-banda.

Nuestros resultados muestran que estos algoritmos permiten una clasificación

rápida y certera de galaxias lopsided, incluso con información rápidamente obtenida

de surveys fotométricos, permitiéndonos explorar si esta perturbación del disco

pueda estar conectada con las historias de evolución especificas de estas galaxias.



Summary

Lopsided galaxies are late-type galaxies that feature a non-axisymmetric disc

caused by an uneven distribution of their stellar mass, or light. Despite being

a relatively common perturbation, several questions regarding its origin, and the

information that can be extracted from them about the evolutionary history of

late-type galaxies.

The advent of several large multi-band photometric surveys will allow us to

statistically analyze this perturbation, with information that was not previously

available. Given the strong correlation between lopsidedness and the structural

properties of the galaxies, this thesis aims to develop a method to automatically

classify late-type galaxies between lopsided and symmetric. We seek to explore

whether an accurate classification can be obtain by only considering their internal

properties, without additional information regarding the environment inhabited

by the galaxies.

We select a sample of ≈ 8, 000 late type galaxies from the Illustris TNG50

simulation. A Fourier decomposition of their stellar mass surface density is used

to label galaxies as lopsided and symmetric. We trained a Random Forest clas-

sifier to rapidly and automatically identify this type of perturbations, exclusively

using galaxies internal properties. We explore different algorithm to deal with the

imbalance nature of our data, and select the most suitable approach based on the
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considered metrics.

We show that our trained algorithm can provide a very accurate and rapid

classification of lopsided galaxies. The excellent results obtained by our classifier,

trained with features that do not account for the galaxies environment, strongly

supports the hypothesis that lopsidedness is mainly a tracer of galaxies internal

structures. We also show that similar results can be obtained when considering

as input features observable quantities that are readily obtainable from multi-bad

photometric surveys.

Our results show that algorithms such as those considered allow a rapid and

accurate classification of lopsided galaxies from large multi-band photometric sur-

veys, allowing us to explore whether lopsidedness in present-day disc galaxies is

connected to galaxies specific evolutionary histories.
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Chapter 1

Introduction

Understanding the formation and evolution of galaxies are key aspects to con-

strain the current standard cosmological model, Lambda Cold Dark Matter

(ΛCDM). This model is a theoretical framework that describes the for-

mation and evolution of the Universe (e.g. see Peebles, 1998). In this, Λ

represents the cosmological constant, correlated with dark energy and

the expansion of the Universe. CDM denotes cold dark matter, which

is constituted by weakly interacting particles with low (non-relativistic)

velocity (Belén Barreiro, 2000).

The ΛCDM model describes that the formation of galaxies occurs by a hier-

archical growth (e.g. see White and Rees, 1978; Frenk et al., 1996; Ratra and

Vogeley, 2008), where small overdensities collapse, forming haloes of dark matter

(DM haloes). The baryons are then “trapped” into their potential well, heated

by shock and causing the gas to reach virial temperatures of the halo. At the

same time this is happening, the haloes are merging with more clumps, growing

in size and mass. As the gas cools down by photon emission and losing angular

momentum, the gas condenses at the center of the halo, forming what we know

today as galaxies.

Studying the morphology of galaxies is an important topic that gives insight

into the formation and evolution of galaxies. Some examples consist of under-

standing the effects of the environment, origins of bars, driving mechanisms for

spiral structure, among others (e.g. see Buta, 2011). Among these morphological
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1 Introduction 2

features, lopsidedness in late-type galaxies present a unique paradigm in studying

the evolution and formation of spiral galaxies. In comparison with more symmet-

rical late-type galaxies, lopsided galaxies exhibit different internal properties and

evolutionary paths, and can affect the dynamics of the hosting disk differently.

However, the origin of lopsidedness is not as well understood as other common

perturbations, such as bars and spiral arms. Thus, further understanding lopsid-

edness in late-type galaxies provides a powerful tool used to constrain the current

cosmological model and to better understand how galaxies form and evolve over

time.

In this thesis, we focus on studying lopsided galaxies in a large sample from

the IllustrisTNG simulation by comparing their internal properties, excluding any

information about the environment whatsoever with those from late-type galaxies

that feature a more symmetrical disk. We have divided the introduction section

into two parts. In the first half, we define lopsided galaxies and highlight their key

differences from more symmetrical late-type galaxies. Additionally, we will trace

the evolution of interest in lopsided galaxies, from the earliest studies on the topic

to the most recent, illustrating why they have become such interesting objects to

study the formation and evolution of spiral galaxies. In the second part, we discuss

the application of machine learning (ML) algorithms in astronomy, supported by

relevant examples, and we dive deeper into how Random Forest algorithms work,

as it is the main algorithm we use in this thesis.

1.1 Lopsided Galaxies

Lopsided galaxies are late-type galaxies that feature a non-axisymmetric disk

caused by an uneven distribution of stellar mass or light. A clear example of this

asymmetry in galaxies is shown in Fig. 1.1, where it shows the M101 galaxy,

or pinwheel galaxy, image obtained from the Hubble Space Telescope. M101 is

a face-on spiral galaxy that shows a clear non-axisymmetric distribution on its

galactic disk, where the lower right side of the galaxy is more extended than the

upper left side, and the galactic center seems to be off-centered from the galaxy’s

center of mass.
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Figure 1.1: M101 galaxy. Example of a lopsided galactic disk. Source: Hubble Space Tele-
scope/NASA.

Disk asymmetry is a phenomenon that has been addressed in quite early stud-

ies, where it has been known that not all spiral galaxies have a “perfect” or

completely circular disk. For instance, Sandage (1961) presented an atlas for the

images of 176 galaxies obtained from blue-sensitive plates, aiming to explain their

morphologies and differences based on Hubble’s galaxy classification (commonly

known as the tuning fork diagram). This atlas showed that not all spiral galaxies

exhibit a symmetric disk structure. Considering that the structure of galaxies

can be also linked with the distribution of neutral hydrogen (HI), different early

studies regarding HI in spiral galaxies have also noted an asymmetrical distribu-

tion in their galactic disk. An example of this is by Beale and Davies (1969),

where they studied the HI distribution of M101 obtained from the 21-cm line

from the Mark I radio telescope. In this study, they found that there is almost

two times more HI on the north side than on the south of the nucleus, which

clearly represents an uneven distribution in the galactic disk. An example of

this can be seen in Fig. 1.2, which shows the optical and HI feature of

the M101 galaxy. This asymmetry can also be seen in the integrated spectrum

over the whole galaxy, or also called global HI profile, where the flux density is
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Figure 1.2: Optical and neutral hydrogen (HI) features of M101. Three nearby companions are
also shown. Image obtained from Beale and Davies (1969).

much higher in the northeast part of the galaxy in comparison with the southwest

side, leading to a higher difference in both halves of the velocity profile. They

also found that optical features of the galaxy follow a similar distribution of the

asymmetry in HI. This was also suggested by Rogstad (1971). Thus, it can be said

that lopsidedness is a global phenomenon affecting the overall galactic disk, where

the gas and stars are being affected by the same lopsidedness potential (Jog, 1997).

Although up until this point the asymmetry was known, not many studies

were made on the topic due to the complexity in comparison with studying more

symmetrical galaxies. In particular, it was not until Baldwin et al. (1980) work

that lopsidedness was given a “formal” definition. In this study, they examined

the HI distribution of 20 galaxies, where they defined lopsidedness as the ratio of

the HI gas density from the two sides of the galaxy to be 2:1 and that the asym-

metry extends over a large radial interval. Considering this definition, 6 galaxies
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had high evidence for large asymmetries, especially at their outskirts, 4 galaxies

did present a certain degree of asymmetry, but less than the previous 6, and the

rest of the galaxies had a more disturbed HI distribution due to possible tidal

interactions or no large-scale asymmetries, which leads to difficulties regarding

the determination of lopsidedness.

After this, lopsided galaxies seemed to be forgotten for a few years, aside from

the typical HI distribution studies for some selected galaxies. In 1994, Richter and

Sacisi rekindled this topic by studying lopsidedness in the largest observational

sample of late-type galaxies, up to that day. Their sample consisted of 1,738

isolated disk-like galaxies, obtained from 6 different single-dish HI surveys. With

this data, they aimed to study the frequency of the asymmetries in galaxies, and

to estimate the number of galaxies that exhibit it. Their main objective was to

analyze the origin and evolution of lopsidedness. To define lopsidedness, they con-

sidered a similar definition as Baldwin et al. (1980), where the two halves of the

global HI profile were compared with the following criteria: (a) significant peak

flux differences (≳ 8σ or ≳ 20%) between the two horns, (b) total flux differences

(≳ 55:45%) between the low- and high-velocity halves, or (c) width differences (≳

4 velocity channels or ≳ 50[km/s]) between the two horns. This led to classifying

the asymmetry in the global HI profile of galaxies as Strong, Weak, or No (in-

significant) asymmetries. This classification resulted in 113 Strong galaxies, 206

Weak galaxies, and 281 galaxies with No asymmetries. A few considerations had

to be made in regard to the quality of the data obtained from the surveys, e.g.

excluding galaxies with distorted, peculiar looking profiles, and profiles that are

plotted before baseline removal, among others. This led to a decrease in classified

galaxies, where only 600 out of 1,738 galaxies were able to be classified. Nonethe-

less, the authors concluded that asymmetries are a common phenomenon in spiral

galaxies, considering that it has an incidence of 50%. This was then confirmed by

Haynes et al. (1998), where they studied a sample of 104 isolated spiral galaxies

with high spectral resolution. By employing two different methods, one of which

is similar to Richter and Sacisi (1994), they concluded that their significant asym-

metry is also present in about 50% of the global HI profiles they analyzed.

Regarding the global HI profiles, it is important to note that the comparison

between both halves of the HI profile is made by visual inspection, which could
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add uncertainty in determining asymmetries. It also depends on the galaxy’s

projection or the “direction” of the asymmetry, reducing the overall projected

perturbation of the galaxy. Thus, it is believed that this method could have un-

derestimated the asymmetry degree in these galaxies (Bournaud et al., 2005; Jog

and Combes, 2009).

Following works have also studied the number of lopsided galaxies in their

samples with other types of methods, such as a Fourier decomposition of the

stellar mass or light distribution, 180° radial rotation of the galaxy image, and

a sector-based asymmetry analysis. These three methods are explained by the

following papers:

• Zaritsky and Rix (1997) studied the asymmetries in images of 60 field spiral

galaxies in the I and K’ band, both obtained from the 1-m Swope telescope

in Las Campanas Observatory. To measure lopsidedness, they performed

a Fourier Decomposition on the disk’s light distribution. The Fourier de-

composition yields the A1 parameter, referred as < A1 > and defined as

the average of the ratio of the m=1 and m=0 Fourier amplitudes between

a certain radial interval, which in this work is 1.5 and 2.5 scale lengths.

These Fourier modes are defined as the amplitude of the first and

zeroth term of the summation, respectively. We further explain how

this decomposition analysis works in Chapter 3.1. In this case, galaxies with

< A1 > values greater than 0.2 were considered to be significantly lopsided.

The Fourier decomposition is highly sensitive to inclination, as it depends on

the light or stellar mass distribution of the galaxy. Thus, the galaxies were

considered to have kinematic inclinations of less than 32° (or cos i = 0.85,

with i the inclination degree of the galaxy). In total, 16 out of 60 galaxies

presented significant lopsidedness, translating to a approximately 30% of

the total sample.

• Conselice et al. (2000) studied the rotational asymmetry in a sample of 113

late-type galaxies images from Frei et al. (1996), to develop an unambiguous

method to measure lopsidedness. These were nearby, high brightness surface

galaxies, considering early elliptical and S0s to late-type spiral galaxies, ir-

regulars and galaxies with peculiar features. The images of 31 spiral galaxies

were obtained from the Palomar Observatory in the Thuan-Gunn g,r, and i
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photometric bands. For the remaining 82 spiral and elliptical galaxies, the

images were obtained from the Lowell Observatory in the Bj and R bands.

To measure lopsidedness, they tested two similar methods which considered

the normalized subtraction of the light distribution between the original

image and its rotated version by the angle ϕ = 180°. The first method,

which they named “rms” asymmetry method, was defined following Con-

selice (1997):

A2
rms =

∑
(Io − Iϕ)2

2
∑

I2o

The second method, named as “abs” asymmetry method, was defined fol-

lowing Schade et al. (1995) and Abraham et al. (1996):

A2
abs =

∑
|Io − Iϕ|

2
∑

|Io|

In both cases, Io is the intensity distribution of the original image for each

pixel and Iϕ the intensity distribution of the image rotated by ϕ for each

pixel. The goal by using these methods is to obtain, for each galaxy, a nor-

malized residual value between 0 and 1, where values closer to 1 represent

completely asymmetrical galaxies, whereas values closer to 0 represent com-

pletely symmetrical galaxies. However, the abs-asymmetries have a better

correlation with color (which gives important information about morpholo-

gies, star formation, and interactions), thus it is considered to be the main

method for their work.

• Kornreich et al. (1998) studied the asymmetry in the R-band images of a

sample of 32 face-on spiral galaxies, obtained from the Kitt Peak National

Observatory and the Cerro Tololo Inter-American Observatory. To measure

global lopsidedness they considered a geometrically-based method, in which

the image of the galaxy is divided into a certain number of trapezoids, or

“wedges”. To do so, they subdivided each galaxy by a certain number n of

equal area triangles, where their apex, defined as the vertex located between

two equal sized sides and opposite to the unequal side, is located at the center

of light of the galaxy. This is often considered as the pixel with the highest

brightness. Each wedge is then truncated at a predetermined radius to avoid
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the galactic bulge and bars, as they can introduce local asymmetries that

do not count for the large-scale non-axisymmetry. Then, the magnitude for

each sector was obtained. They were used to get a quantitative measure

of lopsided, obtained from the maximum difference of magnitude for all

wedges, ∆Mmax
n . Considering their respective magnitude error σ and that

∆Mmax
n probably overestimated the asymmetry, the authors reported that

approximately 30% of the sample, or 10 out of 32 galaxies, were optically

lopsided.

In particular, Kornreich et al. (1998) reported that the “wedge” method has

a few advantages over the others. This advantages consisted of not depending on

dominant even spiral modes and the inclination of the galaxy. Instead, it would be

reflected as a decrease in magnitude, which is almost negligible for most galaxies.

It could also measure other types of asymmetries, aside from lopsidedness, such as

“boxy” or “triangular” shapes. Moreover, the authors claimed that this method

is applicable in galaxies when the Fourier Decomposition method fails, mostly due

to its definition, where symmetry is only dependent on the disk’s radius. Such

cases can be one-armed spiral galaxies and m=1 spiral galaxies that are quali-

tatively symmetric but are classified as lopsided, probably due to its A1 being

adjacent to the A1 threshold that separates both types of galaxies. However, this

particular issue was addressed by other studies, such as Jog (1997), Angiras et al.

(2006), and van Eymeren et al. (2011), where the Fourier decomposition is only

considered to be a representative measure of the global lopsidedness if the phase

ϕ1 of the m=1 mode remains constant over large radii, even if the magnitude of

A1 has a noisy behavior.

As different methods of measuring lopsidedness have been proposed, it is im-

portant to ensure a similar method to thoroughly compare the results of different

studies. In regard to this, Jog and Combes (2009) proposed the use of the Fourier

decomposition analysis to do so, as it gives a quantitative measurement, it is

defined within the galactic radius, it avoids further assumptions on the light or

mass distribution of the galaxy, and it is less computationally expensive on larger

samples.
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Considering the studies mentioned up until now, it is clear that lopsidedness

is a common phenomenon in the nearby Universe, where a high percentage of

galaxies in different samples present different degrees of this non-axisymmetry.

More recent studies have also continued measuring lopsidedness in newer data

samples obtained from more recent surveys and telescopes. For instance, Bour-

naud et al. (2005) measured lopsidedness in the NIR images of 149 spiral galaxies,

selected from the Ohio State University Bright Spiral Galaxy Survey (OSUBSGS;

Eskridge et al. 2002), in which they performed a Fourier decomposition analysis

on the light distribution within 1.5 to 2.5 disk scale lengths. Considering that

the mean of A1 was 0.11, 34% of the sample presented values higher than this,

i.e. 34% of the galaxies were considered to be lopsided. Zaritsky et al. (2013)

also measured lopsidedness with a Fourier decomposition of the light distribution

of 167 nearby galaxies from the Spitzer Survey of Stellar Structure in Galaxies

(S4G; Sheth et al. 2008), between 1.5 to 2.5 scale lengths (inner radius) and 2.5 to

3.5 scale lengths (outer radius). The latter was considered to check the behavior

of lopsidedness in even larger radii. Considering the average strength of m=1

within the inner radius, < A1 >i, the authors claimed that there are many tens of

percent of lopsided galaxies depending on the selected threshold to differentiate

between both types of galaxies. On that same survey, Laine et al. (2014)

created a catalog of galaxies with different visual features, one of them

being lopsidedness. To classify this asymmetry, they visually inspected

the near-infrared images of the complete sample of S4G, consisting of

2,352 galaxies. They considered a galaxy “asymmetric” if the outer-

most isophote were not elliptical. In total, 506 galaxies were considered

asymmetric, or 22± 1% of the total sample. Kruk et al. (2017) studied

the offsets between the stellar bar and their disks of a galaxy sample

selected from the Sloan Digital Sky Survey (SDSS; York et al., 2000)

data release 7 (Strauss et al., 2002; Abazajian et al., 2009). To consider

a galaxy having an offset between the bar and disks, the measured off-

set between the photometric centers of bar and disk components has

to be larger than the galaxy’s full width at half-maximum of the point

spread function (which describes the intensity distribution of the point

source). Considering this, the resulting “offset” sample consisted of

271 galaxies. As previous works suggested (e.g. Pardy et al., 2016),

bars can be correlated to lopsidedness. To check this, they measure
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this asymmetry using a Fourier decomposition. This resulted in 90%

of the offset sample showing A1 values larger than 0.05 (thus consid-

ered lopsided) and 63% of those were considered strong lopsided with

A1 values larger than 0.1. These thresholds were considered following

Bournaud et al. (2005).

Simulations are an important tool to study the different processes

happening in the Universe, including lopsidedness. As in this thesis

we make use of the IllustrisTNG simulation to select a large sample of

late-type galaxies, we select a few works that describe lopsidedness also

using IllustrisTNG. An in-depth description of IllustrisTNG and their

simulations is in Chapter 2.1. In particular, Watts et al. (2020) studied

the HI distribution of galaxies in TNG100, as it has been previously

shown that the asymmetries in the HI distributions are a common oc-

currence. Their final sample consisted of 10,699 galaxies, which are able

to replicate the HI gas fraction scaling relations from GALEX Arecibo

SDSS Survey (Catinella et al., 2018). To measure asymmetries, they

used a method that quantifies the differences between the two horns in

the integrated HI profile. This method is called the areal flux ratio pa-

rameter Afr (Haynes et al., 1998), which is defined by the integrated flux

in each half of the spectrum, bounded by the limits Vmax and Vmin and

divided by the middle velocity VM = 0.5(Vmin + Vmax). The resulting Afr

yields a value from 1 onward. Values closer to 1 represent symmetrical

galaxies and the larger the value, higher is the asymmetry. By con-

sidering the threshold 1.1, 1.2, and 1.3 to separate between symmetric

and lopsided galaxies, 62%, 39%, and 25% of the galaxies in the sample

are considered asymmetric, respectively.  Lokas (2022) also make use of

TNG100 to study the asymmetry of the disk’s stellar component on a

sample of 1,912 disk-like galaxies. However, instead of using Afr,  Lokas

used the Fourier decomposition on the surface brightness distribution

of the stellar particles within (1 − 2)R50, which is an equivalent to the

radial interval used in observational studies, particularly in Rix and

Zaritsky (1995) and Bournaud et al. (2005). This resulted in 161 lop-

sided galaxies with A1 > 0.1, or 8% of the total sample.
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This last work raises an intriguing question: are simulations and ob-

servational data comparable when studying lopsidedness? By selecting

disk-like galaxies in TNG100,  Lokas found that only 8% of their sample

have a certain degree of lopsidedness. If they were using a radial inter-

val similar to observations, how come they obtained such a low quantity

of lopsided galaxies?  Lokas suggested this could be caused by two pos-

sible reasons. First of all, although their sample follow observational

trends (e.g. Reichard et al., 2009) where lopsided galaxies tend to be

more star forming than symmetric galaxies, the overquenching effect

(i.e more rapid quenching in green valley galaxies than in observations;

e.g. Angthopo et al., 2021) known to happen in IllustrisTNG could be

affecting the low number of lopsided galaxies. In other words, if too

many galaxies stop star formation, they would be less likely to gener-

ate a lopsided perturbation on their stellar disk. Secondly, the limited

resolution of TNG100 could also play a role, as it has been shown that

the simulated galaxy’s disk is thicker than in observations and thus,

their dynamics are affected (Haslbauer et al., 2022). This causes that

subtle effects on the galactic disk might not be considered, affecting

the reproducibility of the lopsided disks in IllustrisTNG.

Several works have also found that lopsided galaxies show differences in their

structural properties with respect to more symmetrical late-type galaxies. In par-

ticular, Reichard et al. (2008) studied a sample of 25,155 low redshift (z < 0.06)

galaxies (including early-type galaxies) in SDSS (York et al., 2000; Stoughton

et al., 2002), and showed that lopsided galaxies tend to have lower concentration

and stellar mass density within their half light radius than symmetrical galaxies.

This suggests that there is a correlation between lopsidedness and the structural

properties of the galaxies. More recent studies have make use of the Illus-

tris TNG50 to study lopsidedness in the nearby Universe. TNG50 is the

simulation with the smallest volume, thus it has the highest resolution

out of the three simulations. This can help with the issues previously

mentioned. In particular, Varela-Lavin et al. (2023) studied lopsided-

ness in a sample a of 240 late-type galaxies at z = 0. They measured

lopsidedness by applying a Fourier decomposition to the stellar mass

of the particles within the radial interval (0.5 − 1.1)Ropt (i.e. the radius
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where the superficial brightness profile in the V -band falls to a magni-

tude of 26.5 mag arcsec−2). Varela-Lavin et al. (2023) found a similar

strong correlation between lopsidedness and the internal properties of

galaxies. Specifically, they found an anti-correlation between lopsided-

ness and the tidal force exerted by the inner regions on the outskirts

of their galactic disk. This result indicates that less gravitationally co-

hesive disk galaxies are more susceptible to developing this asymmetry

when exposed to external perturbations. Dolfi et al. (2023) extended

this study by considering a larger sample of z = 0 TNG50 disk-like

galaxies, located in different environments. They showed that, inde-

pendently of the environment, while symmetric galaxies are typically

assembled at early times ( ∼ 8 to 6 Gyr ago), with a relatively short

and intense burst of central star formation, lopsided galaxies assem-

bled over a longer time period, with less prominent initial bursts and

a subsequent milder and constant star formation rate up to z = 0. This

results suggest that even if there are differences between simulations

and observational data (e.g. different sample characteristics and radial

interval when measuring A1), their structural properties (e.g. concen-

tration and stellar mass density, among others) follow a similar trend

and, thus, they can be comparable.

Interestingly, it has also been shown that lopsidedness in the galac-

tic disks can have a significant impact in the dynamics and evolution of

the host galaxy. This effect can cause enhanced star forming regions,

fueling the central active galactic nucleus, redistributing matter, among

others (e.g. Jog and Combes, 2009).

Despite lopsided galaxies being an ubiquitous object in the nearby universe

and showing significant structural differences in comparison with more symmet-

rical galaxies, this asymmetry has received less attention than other commonly

studied perturbations (e.g. Sellwood, 2013; Conselice, 2014; Erwin, 2019). More-

over, the origin of this asymmetry is not quite well understood, as both galaxies in

the field and in denser environments present lopsidedness. Different mechanisms

have been proposed as the main driver of this asymmetry, raising the question of

whether lopsidedness is a consequence of, for example, internal processes in the
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galactic disk, or if it is caused by interactions between galaxies in denser envi-

ronments. The following mechanisms have been proposed as some of the possible

main drivers of this asymmetry:

Lopsided elliptical orbits. To explain the asymmetry in the HI distribution

of their sample, Baldwin et al. (1980) proposed that lopsidedness is associated

with a lopsided pattern of elliptical orbits. This hypothesis emerged because al-

ternative mechanisms (e.g. tidal interactions or gas accretion) failed to account

for the longevity of asymmetries in isolated galaxies. Considering previous stud-

ies of spiral arms formation, Baldwin et al. proposed a different mechanism as

the differential rotation of the galactic disk would wind up the asymmetries in

one or two rotation periods, which do not account for the observations of lopsided

galaxies. To explain it, they considered elliptical orbits, as these orbits create den-

sity variations in gas and stars due to them moving closer and farther from the

galactic center. If they are aligned in a specific pattern, a stable lopsided distri-

bution emerges in their apogalactica (farthest point in the orbit from the galactic

center). As the precession rate in elliptical orbits Ω − κ is negative (where Ω is

the angular velocity of material orbiting the center of the galaxy and κ is the

epicyclic frequency of said material, defined as the oscillation frequency of

a perturbed material or, in other words, how fast they oscillate in and

out from the galactic center), the lobes of the elliptic orbits rotate backwards

in comparison with the rotation of the galaxy, which resulted in a much more

slower precession than the overall galaxy’s differential rotation. Considering this,

the resulting wind-up time between two points (near the apocentre and pericen-

tre) is given by 2π/∆(κ−Ω), where ∆(κ−Ω) is the difference in precession rates

across radii. In other words, this is the time scale where the differential rotation

disrupts the asymmetric structures. For a flat rotation curve (constant velocity),

the differential shearing of the lopsided pattern have an epicyclic frequency of

κ = 1.414Ω, resulting in a winding-up time of ≈ 5(2π/∆Ω). This means that the

time it takes for the asymmetric pattern to wind-up is 5 times slower than the

material arms. For the outer parts, this would take 5.4109yr, which is way more

than what lopsidedness lasts caused by tidal interactions. However, this resulting

time was not sufficient to account for the origin of some observed asymmetries,

as it is still less than the life time of the galaxy. Furthermore, the origin of these

orbits is not clear. Even so, it gives an insight on the longevity of lopsidedness.
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Tidal encounters. Galaxies in denser environments, like groups or clusters, are

more likely to interact with each other. These interactions could be in the form

of distant interactions, such as flybys, or closer interactions, such as minor and

major mergers. However, all types interactions can influence the dynamics and

evolution of the galactic disk. In the first paper addressing lopsidedness, Beale and

Davies (1969) proposed that the non-axisymmetry observed in M101 was caused

by nearby companions, a pattern also seen in other similar systems, such as the

Milky Way and M31. However, Zaritsky and Rix (1997) argued that lopsidedness

is not necessarily caused by nearby companions, but could instead result from

mergers or an interaction that resulted in the companion receding far from the

host galaxy, enough to not be detected in the observed images. An intriguing

finding from mergers, proposed by Zaritsky and Rix, is that there is a correlation

between lopsidedness and enhanced star forming regions triggered by mergers. To

investigate this, they checked correlation between the A1 parameter and the mass-

normalized color ∆B , which is a proxy of star formation activity. ∆B is

defined as the difference between the observed and predicted blue mag-

nitude, both calculated by the Tully-Fisher relation (Tully and Fisher,

1977) which uses the HI line width. For the predicted blue magnitude,

however, it is calculated by considering pure Hubble flow (motion of

galaxies due to the expansion of the Universe) with Ho = 75km s−1Mpc−1.

A1 and ∆B were found to be correlated by the Spearman rank correlation test

with a confidence of 96%. This can be explained by the mechanism responsible

for lopsidedness also affecting the stellar populations. Walker et al. (1996) also

proposed a similar result, suggesting that asymmetries could be induced by satel-

lite accretion in a minor merger process. These interactions can also affect the

morphology of a galaxy, leading to the creation of spiral arms and asymmetries

in the galactic disk. Taking this into account, Rudnick et al. (2000) considered

minor mergers to be the possible main mechanism for lopsidedness in their sam-

ple. Furthermore, following a similar path to Zaritsky and Rix (1997), they also

proposed an overall correlation between lopsidedness (and thus interaction) and

recent (≤ 0.5Gyr) star formation histories, as well as current (≤ 107yr) star for-

mation rates.
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Tidal encounters were thought to be the most accepted explanation for the origin

of lopsidedness. Yet in some cases, galaxies do not seem to have significant com-

panions capable of triggering such asymmetries. Bournaud et al. (2005) reached

this conclusion by studying the effect of tidal forces from companions on each

galaxy of their sample. As mentioned beforehand, this sample consisted on 149

spiral galaxies from OSUBSGS. Galaxies were considered to be companions if they

had a radial velocity within 500km s−1 and they were within 2.5 degrees on the sky

from the main galaxy. This information was obtained from the NED database.

By comparing the companions’ tidal effects exerted to the main galaxy and the

main galaxy’s A1 parameter, it was clear that there was no correlation. This

was calculated using a tidal parameter1, which quantifies their effects

of tidal forces by considering the mass of the host galaxy (Mo), its scale

length (Ro), the sum of the companions’ mass (Mi), and their respective

projected distances (Di). As mentioned by Bournaud et al., this conclusion

is also in agreement with Wilcots and Prescott (2004), where they study the HI

distribution of 14 Magellanic spiral galaxies. From observations, only 4 of the

14 galaxies showed companions. However, only 2 of them have companions that

are interacting and causing lopsidedness. They concluded that lopsidedness is

rather long-lived and not related to the environment these galaxies reside in. It

is important to note, however, that even if not a high percentage of lopsidedness

in galaxies is caused by any form of tidal interactions, it can not be ruled out

completely. There are still some cases that can explain it, as we have mentioned

in the previous works.

Disk response to the distorted dark matter halo. A consequence of a dis-

tant tidal interaction between galaxies is the response of the galactic disk to their

interacting DM haloes. As the haloes of two distant galaxies interact, the distorted

halo applies a lopsided potential to the disk, causing it to warp or triggering non-

axisymmetrical structures. This phenomenon can explain the asymmetric velocity

profile in the HI gas distribution. As the gas becomes unstable in an overdense

1A word of caution: although named the same, the tidal parameter used in Bournaud et al.
(2005) is not the same as the one we use in this thesis. In Bournaud et al.’s case, TP is defined
as log(

∑
i
Mi

Mo
(Ro

Di
)3), which quantifies the tidal forces exerted from the satellites to the host

galaxy. In our case, the parameter we use to train and test the classifiers is the tidal parameter
TP, which is a proxy of the force exerted from the inner regions of the galaxy to its outskirts,
indicating how gravitationally cohesive the galaxy is. The definition is given in Chapter 2.2.
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region of a lopsided potential due to the increase in surface density, it enhances

the star formation rate and creates the disparity between velocities in both halves

(Jog, 1997). This phenomenon can also be attributed to a relatively weak inter-

action between a host galaxy and a satellite (Weinberg, 1998). As an example,

Gómez et al. (2016) studied the vertical structure of a Milky Way-like simulated

galaxy, finding that it develops a strong vertical pattern capable of forming a

Monoceros ring-like structure. Gómez et al. proposed that this pattern is driven

by an offset, or displacement, of the halo’s center of mass and its density cusp

(which resulted from the torque of an overdensity wake caused by the response of

the DM halo to the passage of the satellite), rather than direct tidal forces from

the satellite. In this case, the satellite undergoes a slow flyby, with a relatively

small mass (∼ 4×1010M⊙) and low pericentric velocity (∼ 215km s−1 at ∼ 80kpc),

making it insufficient to directly cause such distortions. However, due to its slow

motion, the DM halo resonantly interacts with the satellite, inducing the forma-

tion of a density wake that amplifies the satellite perturbation (see also Laporte

et al., 2018). This perturbation is then transmitted to the inner regions of the

halo, affecting the embedded stellar disk and resulting in a vertical oscillation. In

a similar note, Varela-Lavin et al. (2023) studied if there is a correlation between

the offset of haloes and the lopsided perturbations in the disk in a much larger

sample. In this, they found that a correlation between the occurrence of lopsided

patterns and perturbations in the DM density field. However, there is also a large

number of lopsided galaxies that have smaller DM density perturbations, similar

to those of symmetric galaxies. Thus, it is important to note that the response

of the galactic disk to a perturbed DM halo is not necessarily the main driver of

the asymmetry in some cases.

Asymmetric gas accretion. To further investigate the origins of unusual spi-

ral morphology, Phookun et al. (1993) studied the possible reasons for the m = 1

spiral structure of NGC 4254, a spiral galaxy with one arm more prominent than

the others, also defined as a one-armed spiral galaxy. This particular galaxy is

shown to not be interacting with any of its companions. However, it has promi-

nent m = 1, m = 3, and m = 5 modes in comparison with m = 2 (Iye et al.,

1982), and it is a photometrically normal Sc spiral galaxy with an unusual strong

one-armed spiral structure in the stellar component (Schweizer, 1976) and a flat

HI rotation curve (Guhathakurta et al., 1988). Aside from interactions, gas infall
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in the galactic disk was the strongest candidate to produce a prominent m = 1

mode, most likely from a tidally disrupted gas cloud or dwarf galaxy. The possible

scenario depicted by the authors is as follows: a cloud of gas orbiting NGC 4254

falls within the galaxy’s tidal radius, which disrupts it and causes some of the gas

to spread over the galactic disk. This causes a perturbation on the disk, resulting

in a more prominent spiral arm and, thus, a prominent m = 1 mode. Nonetheless,

for this scenario to work another amplification mechanism is needed, as asymmet-

ric gas accretion alone is a rather weak interaction to cause such asymmetry. The

authors suggested to be swing amplification, a mechanism where self-gravity and

differential rotation amplify spiral density waves. The conclusions from this work

show an interesting result: external subtle influences can shape the morphology of

some galaxies. Bournaud et al. (2005) also reached a similar conclusion regarding

asymmetric gas accretion, proposing that lopsidedness in their sample is probably

caused by it. This conclusion was reached by studying a sample of simulated

galaxies with a N -body simulation, which consists of galaxies described by parti-

cles of stars, gas, and DM. In this, an asymmetric gas accretion was proposed to

be the driving mechanism that results in a lopsided disk, as it accounts for the

previous observational properties and creates strong m = 1 asymmetries, fueling

the gaseous disk and, thus, enhancing star formation. To explain their reasoning,

Bournaud et al. considered ideal scenarios where gas accretion is fueled by one,

two, and three cosmological filaments, although in reality galaxies are fueled by

many more. These resulted in a long-lived strong m = 1 mode. In another study,

 Lokas (2022) also reached to the conclusion that the asymmetry in their sample

was caused by an asymmetric star formation, most probably thanks to an asym-

metric gas accretion. This conclusion was supported by the fact that the galaxies

that present such asymmetry in their sample have, on average, more gas, higher

star formation rate, lower metallicity, and bluer colors.

In summary, lopsided galaxies are a key aspect to understand the different

dynamical processes that are affecting late-type galaxies in the nearby Universe.

They are an ubiquitous object in the Universe (i.e. ∼ 30% - 50% of

late-type galaxies in observational samples have shown some degrees

of this asymmetry) and, in comparison with more symmetrical galaxies, lop-

sided galaxies have different internal properties, evolutionary paths, and affect the

dynamics of the hosting disk. Furthermore, studying the asymmetry in a large
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sample of galaxies can give important insight into the physical origin of lopsid-

edness in disk-like galaxies, and even further understanding the formation and

evolution of spiral galaxies.

1.2 Automation in today’s context

Machine Learning (hereafter ML) algorithms have revolutionized data analy-

sis by enabling automated pattern recognition and prediction from large datasets.

These algorithms, ranging from supervised learning methods (models that use la-

beled data to compare with the predictions) to unsupervised learning techniques

(models that identify patterns in unlabeled data), provide powerful tools for un-

covering internal relations from complex systems. Thanks to their versatility, they

have been used in a wide range of fields, such as medicine, biology, technology,

among others.

These algorithms can be subdivided between classification and regression tasks.

Classifiers are algorithms that group, or categorize, data with certain characteris-

tics into a set of classes or categories. Some examples consist of epileptic activity

classification in electroencephalogram signals (Rajendra Acharya et al., 2012),

classification of cancerous and non-cancerous skin lesions for early detection (Ma-

sood et al., 2014), and object detection for self-driving cars (Gupta et al., 2021).

On the other hand, regression tasks capture the underlying relation between

variables, predicting a numerical value based on the inputs. A few examples of

this algorithms are forecasting daily stock market return (Zhong and Enke, 2017),

grouping customers based on their annual income and spending score (Nandapala

and Jayasena, 2020), and anomaly detection in streamed data (Degirmenci and

Karal, 2022).

In the field of astronomy, the use of ML algorithms has grown significantly

due to the rapid increase in available data. However, as the volume of data grows,

so does the complexity of studying diverse astronomical sources. In the following

subsections, we explore into the use of ML algorithms in astronomy, describing a

few popular algorithms and examples. We then describe and summarize the key
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Figure 1.3: Increment of the volume of data obtained from current and future telescopes and
surveys with respect their launched date. Fig. obtained from Smith and Geach (2023).

characteristics of Random Forests, algorithm central to this thesis for analyzing

our sample.

1.2.1 Automation in the Astronomy Field

In the recent decades, the quantity of data provided by some of the current sur-

veys and telescopes, such as SDSS (York et al., 2000), GAIA (Gaia Collaboration

et al., 2016), Zwicky Transient Facility (ZTF; Bellm et al., 2019), James Webb

Space Telescope (JWST; Gardner et al., 2006), and next-generation surveys, such

as Large Synoptic Space Telescope (LSST; Ivezić et al., 2019), Square Kilometer

Array (Dewdney et al., 2009), among others, has increased significantly. A clear

example of the increment of data expected in the following years is shown in Fig.

1.3, obtained from Smith and Geach (2023).

As the volume of data increases, using traditional approaches to study differ-

ent sources (e.g visual inspection) can be a daunting task which could result in

missing important information or discoveries. To avoid this, ML algorithms have

been gaining more popularity over the years in the astronomy field, which has

resulted in almost a necessity to study the different processes occurring in our

Universe.
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The use of ML algorithms in the field of astronomy dates from the ’90s, approx-

imately. Boroson and Green (1992) studied the correlation of selected properties

(e.g absolute magnitude, peaks, full width half maximum, equivalent widths of

certain lines, among others) from the spectra of 89 quasi-stellar objects in the

Bright Quasar Survey catalog (Schmidt and Green, 1983). This was achieved by

applying a Principal Component Analysis (PCA; Hotelling, 1936; Shlens, 2014) to

the properties, where they found that there is indeed a strong (anti-)correlation

between the FeII and [OIII] measurements and an inverse correlation between

the strength of HeII λ4686 and the optical luminosity. Odewahn et al. (1992)

developed an automated classification of stars and galaxies for the Palomar Sky

Survey’s automated plate scanner. In this, each plate could result in ≈ 250,000

images, thus it was necessary to develop an automated method to classify the

sources in those images. To do so, they developed and tested two different Artifi-

cial Neural Networks (ANN), a perceptron2 and Backpropagation Neural Network

(Rumelhart et al., 1986). The resulting success rate (defined as correct classifica-

tion / total number of the sample ×100) for stars and galaxies is above 90%, which

fluctuates depending on the magnitude of the sources. Galaz and de Lapparent

(1997) classified the stellar spectra from the ESO-Sculptor Survey (de Lapparent

et al., 1993) using PCA on their spectra. This algorithm reconstructs the spectra

in a continuous spectral sequence, accounting for ∼ 97% of the total flux of each

spectrum, where it is highly correlated to the Hubble type morphology and the

galaxy’s stellar populations.

From 2000 onward, thanks to the incremental in computational power, ma-

chine based algorithms started to be more considered to study different processes

in the Universe. A few examples in this era consist of galaxy/star classification

in wide-field images (Andreon et al., 2000) and predict galaxy morphology by

using characterizing and easily ready features from SDSS (Ball et al., 2004) using

Neural Networks, automatically classifying periodic variable stars from All-Sky

Automated Survey 1 to 2 using an unsupervised Bayesian classifier on their light

2The perceptron is the simplest form of a neural network, introduced by Rosenblatt (1958). It
consists an input layer directly connected to the output layer, with no in between hidden layers.
The information passes through the network in a strictly forward manner. Thus, it is limited
to solving linearly separable problems, failing to model complex or non-linear relationships in
data.
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Figure 1.4: Number of referred (blue) and non-referred (green) articles in the astronomy subfield
that use machine learning algorithms. Data obtained from NASA Astrophysics Data System.

curve (Eyer and Blake, 2005), and an unsupervised classification of stellar spec-

tra using the clustering algorithm k-means (Sánchez Almeida and Allende Prieto,

2013). However, a significant shift towards the use of automation algorithms

began in 2015. An example of the increment on the number of referred and non-

referred articles that have used ML algorithms in the astronomy field is shown

in Fig. 1.4. Data was obtained from NASA Astrophysics Data System 3. This

increment started thanks to Tensorflow (Abadi et al., 2015) and Pytorch (Paszke

et al., 2017) to be more available to general public (Fotopoulou, 2024). These are

hubs, or libraries, of codes for developing ML and artificial intelligence algorithms,

based on python interfaces to make it more user-friendly while still being able to

do computationally intensive tasks using the GPU and a C++ backend for speed.

Furthermore, it was the first time an image classification algorithm was able to

surpass human classification using a pre-established large dataset of daily images

(He et al., 2015).

To further comprehend the use of ML algorithms in astronomy, we present

a few papers as examples in the galactic/extragalactic subfield, divided by the

3https://ui.adsabs.harvard.edu

https://ui.adsabs.harvard.edu
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scientific objectives they address:

Source Classification: In this case, different sources can be classified by using

observed or simulated information, such as the pixels from an image or features

that are able to characterize the source. Huertas-Company et al. (2015) clas-

sified the morphology of ∼ 50,000 galaxies in the H-band, within 1 < z < 3.

The galaxies were selected from the five fields of the Cosmic Assembly Near-IR

Deep Extragalactic Legacy Survey (CANDELS; Koekemoer et al., 2011). Using

a Convolutional Neural Network (CNN; O’Shea and Nash, 2015), they were able

to identify objects from galaxies, and distinguish irregular and spheroidal from

disk galaxies with less than 1% in misclassification. Dieleman et al. (2015) also

morphologically classified the image of galaxies using the CNN architecture. This

was part of the Galaxy Challenge (AstroDave et al., 2013) from Kaggle4, where

the main goal of this challenge was to develop an algorithm capable of classi-

fying the morphology of galaxies for upcoming (at that time) surveys. In this

challenge, there were two sets of galaxies: a training set and the evaluation set

(in other words, a testing set). Each set contained galaxies with a wide variety

of characteristics, such as morphology, color, and size, obtained from the Galaxy

Zoo 2 project (GZ2; Willett et al., 2013). By rotating and cropping the galaxies’

images, they obtained an accuracy of ∼ 99% for the different questions of GZ2

(smoothness, edge-on, bar, spiral, bulge, anything odd, roundness, odd feature,

among others).On the other hand, Sánchez-Sáez et al. (2021) developed a fast clas-

sifier for the light curves of 15 transient and variable objects from LSST, including

stochastic objects such as quasi-stellar objects, blazars, and host-dominated active

galactic nuclei. To classify between the different classes, they developed a two-

level (algorithm explained in the following subsection) using 152 features, which

included information about periodicity, colors, galactic coordinates, morphologi-

cal classification, among others. The first level consisted of subdividing the data

between transient, periodic, and stochastic. The second level consisted of three

classifiers further subdividing the previous three main classes into subclasses, such

as supernovaes, eclipsing binaries, pulsating stars, among others. The resulting

metrics showed that the first level classifier had a good overall performance, with

a score of 0.96, 0.99, and 0.97 for macro-averaged precision, recall, and F1-score,

4https://www.kaggle.com

https://www.kaggle.com
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respectively. The second level, however, the scores decreased to 0.57, 0.76, and

0.59, respectively. As discussed by the authors, this decrease in performance could

be due to the imbalanced nature of their dataset, finding suitable features to sep-

arate classes, and, in some cases, the similarity in light curves posed a challenge

in subdividing one class (e.g AGNs).

Redshift Estimation: Estimating photometric redshift is an important aspect

to delimitate the large-scale structure of the Universe and to constrain the cos-

mological model (Blake and Bridle, 2005). Photometric redshift can be calculated

by comparing the observed Spectral Energy Distributions (energy vs frequency or

wavelength; hereafter SED) with SED templates at different redshift. This tem-

plates can be empirical, which are obtained by observations, or theoretical, simu-

lated using stellar population synthesis models. The difference is then calculated

by a χ2-fitting, where the best fit is the one that minimizes it. A few examples on

this methodology are Lanzetta et al. (1998), Bolzonella et al. (2000), and Salvato

et al. (2011). However, considering the increase of multi-wavelength photometric

data from surveys in previous years, other methods based on ML algorithms have

been developed to estimate redshift. There are many examples of this estimation

on the early 2000s. In particular, Collister and Lahav (2004) were one of the

first works to estimate photometric redshift using ANNs. To achieve this, they

developed a multi-layer perceptron network, trained and tested with photometric

data and spectroscopic redshift from SDSS. The resulting photometric redshift

predictions (zphot) were then compared with the spectroscopic redshift (zspec). By

using the root mean square deviation (defined as σrms = ⟨(zphot−zspec)
2⟩1/2), they

obtained a value of 0.0229, which is the lowest deviation in comparison with other

previous similar methods. They also tested this network in fainter targets, where

the main motivation of obtaining their zphot is to avoid the difficulty (and thus

expensiveness) in obtaining zspec. The resulting deviation had a slight decrease

(σrms = 0.0327). Vanzella et al. (2004) also developed a multi-layer perceptron to

predict zphot. However, they consider a mix between observed data from SDSS

(SEDs and zspec) and theoretical SEDs, resulting in an improved prediction. More

current works have also measure zphot by using more complex regression algo-

rithms (e.g. Zhang et al., 2013; D’Isanto and Polsterer, 2018; Pasquet et al., 2019;

Henghes et al., 2022).
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Physical Parameters Estimation: Unsupervised algorithms can be employed

in estimating physical properties of different sources. Frontera-Pons et al. (2017)

applied both denoising autoencoders (DAE) and PCA to galaxies’ SED to de-

rive a data-driven diagram and thus, study their formation and evolution. They

reported that DAEs were able to recover galaxy bi-modality (clear separation

between star-forming and quiescent galaxies), it provides a continuous evolution

on the galaxy population with respect redshift, and it shows a clear separation

between distributions in regards mass (higher mass galaxies at higher redshift) by

plotting the first and second DAE component. A similar behavior is seen by plot-

ting the first and second principal components, specially regarding their mass and

specific star formation rate. Mahor et al. (2023) presents an application of a CNN

to estimate important parameters of interacting galaxies using images from the

GalMer database (Chilingarian et al., 2010). This is a library of merger simula-

tions. The desired parameters are the spin, the relative inclination of the galaxy,

viewing angle, and the azimuthal angle, which are fundamental parameters to

understand tidal formations and building dynamic models. They obtain an over-

all good results (R2-score of 0.9986 and a mean absolute error of 0.4348), which

demonstrates the ability of the model to generalize with this simulated data. A

similar result was obtained when using real data from SDSS, with a R2-score of

0.899.

There is no doubt that ML algorithms are an important tool that are posi-

tively impacting the astronomy field, and will continue to do as technology evolves.

This mainly due to their application to different sources in large volumes of data,

obtaining important information about their underlying relations. With this in

mind, in this thesis we make use of the Random Forest (hereafter RF; Breiman,

2001) algorithm to achieve our goal. This is a supervised algorithm that poses a

great advantage in the automation of different classification and regression tasks.

For instance, it can describe different complexity relations between the parame-

ters, or features, of a sample considering their assigned label. It can also works

with a wide variety of different datasets and sizes, among other advantages. In

the case of astronomy, it is clear that its use have grown as a result of the rapidly

increase of data. As application examples, RF poses a great alternative to clas-

sify different sources in different wavelengths (Gao et al., 2009), estimation of

photometric redshifts (Carliles et al., 2010), perform automatic classification of
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light curves of variable stars (Sánchez-Sáez et al., 2021), predict underlying gas

conditions of the circumgalactic medium (Appleby et al., 2023), identify galaxy

mergers (Guzmán-Ortega et al., 2023) and estimate different galaxies’ physical

properties (Mucesh et al., 2021), among other applications.

1.2.2 Random Forests

RF is a type of supervised algorithm that poses a great advantage in the

automation of different classification and regression tasks. For instance, it can

describe different complexity relations between the parameters, or features, of a

sample considering their assigned label. It can also works with a wide variety of

different datasets and sizes, among other advantages. In the case of astronomy,

it is clear that the use of ML algorithms, such as RF, have grown as a result of

the significant increase of data with the current and next-generation surveys and

telescopes.

RF consists of an ensemble, or collection, of decision trees. A decision tree is

a tree-like predictive model composed of nodes, where the sample is recursively

divided by conditions in the form of x
(j)
i < Xj, the latter being the j-th feature

and x
(j)
i a certain threshold based on the j-th feature. In other words, decision

trees divide the input space, which depends on the selected feature/s by the deci-

sion tree, to create subspaces that are able to differentiate between the different

classes. A visual example of the previous description is shown in Fig. 1.5 and

Fig. 1.6, following Breiman et al. (1984). Fig. 1.5 shows a diagram of how a

decision tree works. In this case, we consider an initial condition in the form of

x1 ≤ 0.7 in the first node n1,1, where x1 is a selected feature by the model. If data

from this subsample fulfill or not this condition, it is partitioned between “Yes”,

to the left node n2,1, or “No”, to the right node n2,2. In the case of node n2,1, the

data is again partitioned with the condition x2 ≤ 0.5, where x2 is another feature

aside from x1. This follows the same partitioning process as before, where if the

data fulfills the condition, it is spread to the node n3,1 and if not, it is spread to

node n3,2. The nodes n2,2, n3,1, and n3,2 do not continue partitioning the sample,

but instead give a classification considering a probability of the samples being a

certain class, 0 or 1 (or prediction in the case of a regression task). This final

nodes are called leaves or terminal nodes, represented as rectangles in this case,



1 Introduction 26

x1 ≤ 0.7
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x2 ≤ 0.5

n2,1

1
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Yes
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0

n2,2

No

Figure 1.5: Decision Tree structure, following the example of Breiman et al. (1984).

which result by either fully partitioning the sample or until all leaves have less

than the minimum quantity to split a node, which is determined by a certain pa-

rameter in the tuning process, discussed below. On the other hand, Fig. 1.6 shows

another way to understand the partitions made by a decision tree. Considering

the same conditions as before, it shows the final divided input space. The qual-

ity of the division, or partitioning, is measured by the “purity” of the subspace,

where the purer it is, the more datapoints from the same class are assigned. This

can be calculated by the Information Gain or the Gini impurity function. Both

functions have the same goal, which is to determine the best split in a node, but

they are calculated differently. In the case of the Information Gain function, it

considers the difference between the entropy of the dataset before and after the

split. Considering that the entropy is linked to the “pureness” of a dataset, where

values closer to 0 are represented by data points from the same class and values

closer to 1 are represented by an even distribution of classes, the information gain

function can discriminate how good a split using a particular feature by checking

how much the entropy is reduced. On the other hand, the Gini impurity function

is calculated by the summation of the difference between each class probability,

obtained from the model, where the best split is consider to be the one that mini-

mizes the impurity. In our case, we use the Gini impurity index since it takes less

computational time, and is also the default function in the selected classifiers.

Overall, this process is done firstly on a learning set, or training set, where

then a new unseen dataset is propagated over the tree to predict the correspond-
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Figure 1.6: Separation of the input space, done by the conditions selected in the Decision Tree.
Example obtined from Breiman et al. (1984).

ing class or numeric value.

Although decision trees have numerous advantages due to their intrinsic nature

(e.g. they can be used by any kind of sample, they have an easy hyperparameter

customization or tuning, and they also estimate the feature importance aside from

class predictions), they are easy to overfit. This means that a decision tree may

be less accurate when predicting unseen data during testing, as the model tends

to overly fit to the training set. RF avoids this issue by training non-correlated

decision trees, each on a subsample with replacement of the training set, thus

reducing the variance while maintaining high accuracy. For a binary classification

task, which is our focus, each decision tree classifies the data as either positive

or negative class. Then, the final prediction of the RF is the class predicted by

more than half of the trees. This method is called bagging or bootstrap aggregating

(Breiman, 1996).



1 Introduction 28

1.3 Scope of this Thesis

Current and upcoming large observational surveys, such as the Southern Pho-

tometric Local Universe Survey (S-PLUS; Mendes de Oliveira et al., 2019), Javalam-

bre Photometric Local Universe Survey(J-PLUS; Cenarro et al., 2019), Javalambre

Physics of the Accelerating Universe Astrophysical Survey (J-PAS; Benitez et al.,

2014), and LSST, will enable to identify and characterize lopsidedness in a very

large number of well-resolved galaxies in the local Universe. This will be crucial to

further study the connection between such perturbation and the galaxy internal

properties, and to test current model predictions and understand the origin of

lopsidedness considering their star formation history in relation with the environ-

ment. However, as the volume of data increases, using traditional approaches to

study and characterize this non-axisymmetry (e.g., visual inspection, identifica-

tion of surface brightness residuals with respect to unperturbed distributions, and

Fourier decomposition) can become a limiting task. All these techniques require

human supervision and intervention and thus, they result in cumbersome and slow

approach to study lopsidedness in larger volumes of data, which could also result

in missing important information or discoveries.

Given the previously reported strong correlation between lopsidedness and the

structural properties of galaxies, this thesis aims to automatically classify galaxies

between lopsided and symmetric by only using their internal properties. We also

seek to explore whether an accurate classification of this asymmetry can be ob-

tained without including any direct information regarding the environment inhab-

ited by the galaxies. In a first step, we train and test the selected ML algorithms

using late-type galaxies obtained from the cosmological simulation IllustrisTNG.

In general, cosmological simulations prove to be an excellent tool to use with our

classifiers, as they can model the properties and characteristics of galaxies and

their environment, avoiding the need to make additional estimations to obtain

them as in the case of observations. Furthermore, using simulations ensures a

general framework to interpret lopsidedness in the aforementioned observational

surveys and telescopes, especially in LSST, J-PAS, or J-PLUS, with which

we can then directly apply these trained models to observational data. As a second

step, we will determine the key parameters that allow the correct classification of

lopsided galaxies and thorough study the different classification cases.
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Data

In this section, we present the criteria to select the necessary dataset to train

and test our selected classification models, discussed in Sect. 3.2. In particular,

we use galaxy models extracted from the fully cosmological simulation, Illustris

TNG50 (Nelson et al., 2019a; Pillepich et al., 2019). For each galaxy model,

we compute internal parameters that are commonly measured in observational

studies to classify galaxies’ morphology.

2.1 The IllustrisTNG simulations

IllustrisTNG, successor of the Illustris project (Genel et al., 2014; Vogels-

berger et al., 2014; Nelson et al., 2015), is a set of cosmological, gravo-magneto-

hydrodynamical simulation, ran with the moving-mesh code arepo (Springel,

2010). IllustisTNG builds upon its predecessor model (Genel et al., 2014) by in-

corporating an updated physical model (Pillepich et al., 2018) which accounts for

stellar evolution, gas cooling, feedback and growth from supermassive black holes,

among others. In particular, the improved model for the feedback of the low accre-

tion mode in super massive black holes resulted in a reduction of the discrepancies

with observational constraints identified in the original Illustris simulations, such

as the galaxy color bimodality (Nelson et al., 2018). These improvements make

IllustrisTNG a powerful tool for comparisons with observational data.

IllustrisTNG consists of three simulations with different volumes: ∼ 503Mpc,

∼ 1003Mpc and ∼ 3003Mpc, referred as TNG50, TNG100, and TNG300, respec-

29
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Figure 2.1: Illustration of the volumes of the three simulation of IllustrisTNG. Obtained from
IllustrisTNG webpage.

tively. Each simulation was run with different mass and spatial resolution. Fig.

2.1 shows the difference in volume and resolution between the three boxes. As

a result in mass and resolution, the three realizations complement each other.

For example, the largest simulation box, TNG300, enables the study of galaxy

clustering and provides the largest statistical galaxy sample. On the other hand,

TNG50 provides the smallest galaxy sample at the high mass end, but it has the

highest mass resolution overall. Therefore, it enables a more detailed look at the

morphology of galaxies and its structural properties. TNG-100 falls somewhere

in between these two other simulations.

The scientific goals of IllustrisTNG are to understand the physical processes

that drive the evolution and the structural formation of galaxies, and to make

predictions and to compare current and future observational data to further un-

derstand the physics around galaxies. A few examples of the use of IllustrisTNG

are modeling the formation and evolution of globular clusters to study their kine-

matics (Chen and Gnedin, 2022), studying the nature of low brightness galaxies

(Pérez-Montaño et al., 2022), creating mock galaxy surveys of James Webb Space

Telescope and Hubble Space Telescope using the three IllustrisTNG simulations
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(Snyder et al., 2022), and training a machine learning algorithm to study the

importance of the central massive black hole in quenched galaxies in the early

universe (Bluck et al., 2024), among others.

In this thesis, due to its mass and spatial resolution, we make use of the pub-

licly available TNG50-1 model (Pillepich et al. 2019; Nelson et al. 2019a). Having

a dark matter, baryonic mass resolution of 4.5× 105M⊙, and 8.5×104M⊙, respec-

tively, TNG50-1 allow us to resolve the structure of 109M⊙ stellar disk with at

least 104 stellar particles, enabling a better characterization of their morphology

(Nelson et al., 2019b). Furthermore, as we are employing a machine learning al-

gorithm, we need to make use of a large number of available galaxies to test and

train the classifier. TNG50-1 is a great cosmological simulation to achieve that,

as it contains a large number of distinct galaxy models.

The cosmological model adopted in IllustrisTNG is a flat ΛCDM universe with

the following parameters: Hubble constant H0 = 67.8kms−1Mpc−1, total matter

density Ωm = 0.3089, dark energy density ΩΛ = 0.6911, baryonic matter density

Ωb = 0.0486, rms of mass fluctuations at a scale of 8 h−1Mpc σ8 = 0.8159, and a

primordial spectral index ns = 0.9667 (Planck Collaboration et al., 2016).

2.2 Galaxy Selection

We will focus our study on central and satellite disk-like galaxies, identified

within the redshift range z = 0 to z = 0.5. The z range considered allow us

to obtain a large number of galaxy models to train our classification algorithm.

Note that, even though a given galaxy will be present at different snapshots of the

simulation, their detailed structure will evolve (see e.g. Varela-Lavin et al., 2023)

and, thus, it will serve as input for the training process.

Following Dolfi et al. (2023) based on our selection criteria, we consider galaxies

with:

• Ntot,stars ≥ 104, where Ntot,stars represents the number of bound stellar parti-

cles. This is used to make sure that galaxies have enough stellar particles to

be reasonably well resolved. Considering that the baryonic mass resolution
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is ∼ 105M⊙, as mentioned before, the minimum stellar mass considered is

≳ 109M⊙.

• fe > 0.4, where fe represents the circularity fraction, defined as the frac-

tional mass of the stellar particles with circularity ϵ > 0.7. The latter has

previously shown to reliably select orbits confined to a disk (Aumer et al.,

2013). fe kinematically quantifies the disk’s shape, thus ensuring that the

galaxies selected are considered “discy” (Joshi et al., 2020).

• R90 ≥ 3kpc. This ensures that the structure of the galactic disk is clearly

resolved.

These criteria result in a sample of 7,919 late-type galaxies. The following

parameters, measured from each galaxy, are later used to train and test our clas-

sification models:

Effective Radius (R50): Also known as half-mass radius. Defined as the radius

of the galaxy containing 50% of the stellar mass.

Disk Extension (Rext): Defined as 1.4 × R90, where R90 is the radius of the

galaxy containing 90% of the stellar mass. Both R50 and Rext were calculated

considering as the center of the galaxy, the particle with the minimum

gravitational potential energy.

Concentration (C ): Ratio between R90 and the effective radius R50. Expressed

as:

C = R90/R50

Minor-to-major axis (c/a): Ratio between the minor axis c and major axis a.

Obtained from the eigenvalues of the stellar component’s mass tensor

within 2R50. c/a describes the shape of the inner galactic regions. The values

range from 0 to 1, where values closer to 0 indicate flatter inner galactic regions,

while values closer to 1 indicate rounder inner galactic regions. In our case, we

obtain galaxies between 0.2 to 0.8, as those are the values describing the galactic

disk of late-type galaxies.
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Disk-to-total mass (D/T ): Ratio between the disk’s mass and the total mass

of the galaxy. The disk’s mass is obtained by selecting particles with

ϵ ≥ 0.4. D/T is also used to select central and satellite galaxies in the selection

criteria.

Star Formation Rate (SFR): Total stellar mass created from gas and dust,

per year.

Half-mass (M50): Total (baryonic and dark matter) mass of the galaxy enclosed

within R50.

Central Stellar mass Density (µ∗): Density of the stellar mass contained

inside R50. Defined as:

µ∗ = M⋆
50/πR

2
50

Here M⋆
50 represents the stellar mass of the galaxy enclosed within R50.

Tidal Parameter (TP): Represents the tidal force applied by the inner galaxy

regions (R < R50) to the materials located at distances equal to R90. Defined

following Varela-Lavin et al. (2023) as:

TP = M50/R
3
90

Spin Parameter (Λ(R)): Defined as the galactic disk stellar spin, which is a

proxy of the apparent stellar angular momentum. Calculated following Lagos

et al. (2017), which defines the spin parameter as:

Λ(R) =

∑N(r)
i=1 m⋆,iriVrot(ri)∑N(r)

i=1 m⋆,iri
√

V 2
rot(ri) + σ2

1D,⋆(ri)

This is calculated in N(r) radial bins. σ2
1D,⋆(ri) represents the 1D ve-

locity dispersion of star perpendicular to the disk’s plane, Vrot(ri) the

rotational velocity of the galaxy, and m⋆,i the stellar mass enclosed

within the i -th radial bin ri.
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Figure 2.2: Pearson Coefficient Correlation heatmap of the galaxies’ features obtained from the
IllustrisTNG simulation.

These parameters are computed as described in Dolfi et al. (2023). Note

that all selected parameters characterize galaxies internal properties and do not

explicitly account for the environment in which the galaxies are located. Moreover,

previous works have shown that some of these parameters, such as the disk central

stellar density, µ∗, and its extension, Rext are expected to be strongly linked to

the occurrence of lopsided perturbations. In Fig. 2.2 we quantify the Pearson

Correlation Coefficient between the listed parameters. Checking the parameters’

correlation is an important first step to ensure an accurate representation of the

classifier’s results, as having highly correlated data (Pearson correlation values of

1 and -1) can lead to a misinterpretation of the importance of some parameters.

In our case, we note that our parameters do not show a strong correlation, with

the exception of R50 and Rext, which have a score of 0.88. However, this suggests

that there is no issue in applying all the selected parameters in our classifier.
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Methodology

In this thesis we make use of RFs and its variations to study our selected

dataset. Since we deal with a supervised algorithm, it is necessary to count with

a training and testing set where galaxies are already labeled as lopsided or sym-

metric galaxies. A Fourier Decomposition of the light/mass distribution is often

used quantify asymmetries (e.g. Zaritsky and Rix, 1997; Reichard et al., 2008;

Varela-Lavin et al., 2023; Dolfi et al., 2023). We will use the radial distribution

of the m = 1 mode to label our dataset. To prepare our data before applying

it to the models, we partition the dataset into a training set and a testing set

comprising 70% and 30% of the total sample, respectively. To do so, we employ

scikit-learn1’s stratifiedshufflesplit.

In this section we first discuss how lopsidedness is measured in our models,

and then describe the two different variations of RFs used. We also discuss our

particular application and the metrics used to measure its performance.

3.1 Measuring Lopsidedness

To label the galaxies in our sample between lopsided and symmetric, we apply

a Fourier Decomposition. To do so, we measure the amplitude of the first mode

m = 1 of the stellar disk density distribution, A1, which quantifies the asymmetry

of the stellar mass distribution. Before doing so, we have taken into account a

1https://scikit-learn.org
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Figure 3.1: V-band face-on projected surface brightness distribution of a symmetric (left) and
lopsided (right) galaxy, considered as examples of the classification made by A1. Their respective
A1 value, ID (as in TNG50-1), and redshift snapshot are plotted on the upper side. On the
lower left, the box size considered for each galaxy is also plotted. For both images, the dashed
cyan line represents the radius R50 and the solid cyan line represents the radius 1.4R90, which
are the limits of the radial interval used in the Fourier decomposition.

few considerations. First, it is crucial to ensure that each galaxy is projected

face-on, as the Fourier Decomposition is highly sensitive to the disk inclination.

To do so, we rotate each galaxy such as the z-axis is aligned with the disk angular

momentum vector. Secondly, to focus our analysis on stellar discs, we consider

only stellar participles located within a cylinder of width equal to 1.4R90, and a

height equal to 2h90. Here, h90 is defined as the vertical distance above and below

the disk plane enclosing 90% of the total galaxy stellar mass. The adopted defini-

tion for the disk extent allow us to reach their outer regions without introducing

contamination from the stellar halo. We have tested several definitions for the

disk extent, and found that the, overall, results are not significantly affected by

our definition.

The Fourier decomposition for the stellar mass distribution is calculated as

follows (Grand et al., 2016) :

Cm(Rj, t) =
∑
i

Mie
(−imϕi)

where Mi and ϕi are the mass and the azimuthal coordinate of the i-th stellar
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particle. The A1 radial profile is then calculated as follows:

A1(Rj, t) =
B1(Rj, t)

B0(Rj, t)

where B1(Rj, t) and B0(Rj, t) are the amplitude or strength of the m = 1 and

m = 0 mode, respectively, within a certain radius Rj and a certain snapshot t. In

general, the amplitude of the Fourier decomposition is given by:

Bm(Rj, t) =
√
a2m(Rj, t) + b2m(Rj, t),

where am(Rj, t) and bm(Rj, t) are defined as the real and imaginary values of

Cm(Rj, t) for the m-th mode, respectively.

This is firstly done in concentric radial annuli of 0.5 kpc. Then, the

averaged value of A1(R, t) at a given time, t, and over a certain radial inter-

val (hereafter A1) is used as the global or large-scale lopsidedness indicator. In

general, if A1 > 0.1, the galaxy is considered lopsided. For values of A1 < 0.1

galaxies are considered symmetric. This threshold has been widely adopted in the

literature, where both large observational and simulated galaxies were considered

(e.g. Jog and Combes 2009; Reichard et al. 2008; Varela-Lavin et al. 2023; Dolfi

et al. 2023). The radial interval considered to calculate the global A1 parame-

ter has varied between different works. For instance, Zaritsky and Rix (1997)

studied the lopsidedness distribution of a sample of 60 field spiral galaxies, using

the radial interval of (1.5 − 2.5) disk scale lengths. On the other hand, Reichard

et al. (2008) measured the lopsidedness of a sample obtained from SDSS in the

radial interval R50-R90. van Eymeren et al. (2011) reached distances up to 4

to 5 disk scale lengths to study the asymmetries of the discs’ outer regions. In

our case, we use R50 − 1.4R90, as we find that this radial interval best represent

the non-axisymmetry of our sample. In particular, using R50 as the lower

limit avoids adding additional information of the galaxies’ inner regions

(e.g. bars and bulge) to the asymmetry characterization. For the upper

limit, we tested different radius, such as Ropt, R90, 1.1R90, and 1.4R90, for

the training and testing of the classifiers. However, we chose 1.4R90 as

it allow us to better approximate the disk extension of the simulated

galaxies in our sample.
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Figure 3.2: A1 distribution of our total sample obtained by the averaged strength of the m=1
mode of the Fourier Decomposition for each stellar particle within the radial range R50−1.4R90.
The black line represents the threshold used to distinguish between lopsided and symmetric
galaxies. The orange distribution represents lopsided galaxies (Actual LG) with a total of 5,273
galaxies and the blue distribution represents symmetric galaxies (Actual SG) with a total of
2,646 galaxies.

As an example of the classification made by A1, Fig. 3.1 shows the face-on

projections of the surface brightness distribution in the V-band of two clearly clas-

sified cases. Here the dashed and cyan lines indicate the lower and upper radial

limits, respectively, considered to compute A1. Considering their respective A1

values, the galaxy on the left is classified as a strong symmetric example with

A1 = 0.02, while the galaxy on the right is classified as a strong lopsided example

with a value of A1 = 0.36.

The resulting A1 distribution of our sample is shown in Fig. 3.2. The light

blue and orange shaded areas indicate the distribution for symmetric and lopsided

classified galaxies, based on the selected A1 threshold (black line). Notably, our

sample is imbalanced; i.e. we have a higher quantity of lopsided galaxies with

respect to the symmetric cases. Out of the total sample size of 7,919 galaxies,

5,273 (i.e. 65%) are classified as lopsided, while 2,646 (i.e. 35%) as symmetric.

We note that we find a larger fraction of lopsided galaxies than observations in
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Figure 3.3: Distribution of parameters selected to characterize our galaxy sample. These param-
eters are used as features by the Random Forest classifier. The orange and blue distributions
represent lopsided and symmetric galaxies, respectively. The colored dashed lines represent their
respective median.

the local Universe (i.e. 30%; Zaritsky and Rix 1997; Reichard et al. 2008). As

previously discussed in Dolfi et al. (2023), this difference can be likely attributed

to the different radial interval used to measure the global lopsidedness A1. For

this reason, we are finding a larger fraction of lopsided galaxies than observations,

due to the fact that we are reaching out to larger galactocentric radii where the

lopsided amplitude is stronger (see also Varela-Lavin et al. 2023). The resulting

imbalance imposes a great challenge for the training and testing of our selected

machine learning algorithms. In the following section, we dive deeper into this

issue and describe the methods we use to address it.

Lastly, Fig. 3.3 shows the distribution of our selected parameters, subdivid-

ing both types of galaxies to stress their differences. The dashed lines indicate

the median of the corresponding distributions. In particular, the first and sec-
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ond top panels show the distributions of µ∗, which is the density of the

stellar mass contained inside R50, and TP, which is the tidal force ap-

plied by the inner regions of the galaxy to its outskirts. It is evident

that the two galaxy types show the largest differences in these two parameters.

As expected, lopsided galaxies typically show significantly smaller µ∗ than their

symmetric counterparts. Similarly, lopsided galaxies exhibit smaller values of TP.

This trends are in agreement with previous results (Reichard et al., 2008; Zaritsky

et al., 2013; Varela-Lavin et al., 2023) that highlighted that both types of galaxies

are indeed characterized by different internal structures.

3.2 Automatic Classification: Random Forests

Due to our dataset being imbalanced, as previously seen in Fig. 3.2, using a

RF classifier could lead to an inaccurate classification. The training and testing

of the RF are performed considering bootstrapped samples of the corresponding

data sets. As each sample follows the same distribution as the original dataset,

the majority class would have more predictions in favor, thus having more ac-

curate results than the minority class. To avoid this issue affecting our results,

we employ two different algorithms. The first one consists on oversampling the

minority class of the training set and then apply it to a RF classifier. To do

the oversampling, we use imbalanced-learn2’s smote (Bowyer et al., 2011)

method. This creates new “synthetic” data by interpolation between two close

datapoints in the multidimensional feature space; in our case a 10 dimensional

feature space. The second algorithm consists of using Balanced Random Forests

(hereafter BRF; Chen and Breiman 2004)), where we use imbalanced-learn’s

balancedrandomforestclassifier method. In this case, the bootstrapped

sample is only considered for the minority class, whereas the majority class is ran-

domly sampled with replacement, matching the size of the minority class. This

avoids manually oversampling the dataset and it is directly performed by each

decision tree.

To have an optimal performance of both classifiers using our datasets, we

perform an hyperparameter tuning, which involves finding the best combination

2https://imbalanced-learn.org

https://imbalanced-learn.org
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of parameters from the models to yield the best results. The parameters involved

in the fitting of the RF classifiers are the following:

• n estimators: Number of decision trees in a RF algorithm. The following

number of trees are considered: 2, 4, 8, 16, 32, 64, 128, 256, 500, 1000, or

1500. Although having more than 128 trees is expected to not have higher

spike in accuracy, and even 128 trees is expected to be an optimal number

of trees (Oshiro et al., 2012), we still consider a higher number due to RFs

not consuming as much computational process as other algorithms.

• min samples split: Minimum required amount of data points in an internal

node to split into further nodes. The minimum amount of data considered

is: 5, 10, 15, 20, 30, or 10% of the total data.

• min sample leafs: Minimum required amount of data points to be in a ter-

minal node. The minimum number of data points considered is: 1, 2, 3, or

4.

• max features: Number of features necessary in an internal node to create

the best split. The considered methods to calculate the maximum features

are:

– sqrt: Defined as max features =
√
n features

– log2: Defined as max features = log2(n features)

• max depth: Maximum depth of a tree, represented as the maximum path

from the first node to a terminal node made by each split. The possible

depth are: None, 3, 5, 7, 10, 20, 50, 75, 100, 150, or 200. In particular, None

causes the tree to keep expanding until all leaves are pure (i.e terminal

nodes) or by having less data points than min samples split.

• sampling strategy: Sampling strategy to resample the selected class to han-

dle class imbalance. The strategies considered are:

– majority class: under-samples only the majority class to match the

minority class.

– not majority: under-samples all classes but the majority class.

– all: under-samples all classes to match the size of the smallest sample.
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Table 3.1: Results of the hyperparameter tuning using randomizedsearchcv for each model.

Hyperparameters SMOTE+RF BRF

n estimators 1500 128
min samples split 5 5
min sample leafs 2 2
max features sqrt log2
max depth 75 200
sampling strategy - all

Both classifiers, randomforestclassifier and balancedrandomforest-

classifier , use the same hyperparameters, except for sampling strategy, which

is only used by the latter.

To tune both models, we use randomizedsearchcv with number of iter-

ations niter = 10 and, as cross-validation, RepeatedStratifiedKFold with

number of repeats nrepeat = 10 and number of splits nsplits = 5. In both cases,

the niter, nrepeat, and nsplits are the default values of the parameters. To avoid

unnecessary complexity in the calculations, we retain the default values for the

current and following analysis. For the tuning process, we select an arbitrary

range of possible values we think each hyperparameter could have and

then apply it to the randomized search. This generates random combinations of

hyperparameters and selects the combination that yields the best performance

based on a chosen metric, which in our case is balanced accuracy. It is worth

highlighting the significant difference in the number of trees between both clas-

sifiers,where SMOTE+RF has 1,500 trees in comparison with BRF, which has

128. This discrepancy in the number of trees might be attributed to the added

complexity and variability introduced to the minority class by the SMOTE over-

sampling process. As it creates synthetic data, the complexity and variability of

the sample increases, requiring SMOTE+RF to utilize a larger ensemble of trees

to effectively generalize the data and achieve robust results.

3.3 Metrics

To measure the performance of both SMOTE+RF and BRF, we use the fol-

lowing metrics considering the use of binary classifiers:
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• Precision: Ratio of the number of correctly predicted positive class to the

total number of predicted positive class. Expressed as:

Precision =
TP

FP + TP

where TP represents True Positives (i.e. actual symmetric galax-

ies classified as symmetric) and FP False Positives (i.e. actual

lopsided galaxies classified as symmetric).

• TPR: Ratio of the number of correctly predicted positive class to the number

of actual positive class. Expressed as:

TPR =
TP

FN + TP

where FN represents False Negatives (i.e. actual symmetric galax-

ies classified as lopsided).

• F1-score: Harmonic mean of precision and TPR. Expressed as:

F1 − score = 2 × precision × TPR

precision + TPR

• True Negative Rate (TNR) or specificity: Ratio of the correctly predicted

negative class to the total number of the actual negative class. Expressed

as:

TNR =
TN

FP + TN

where TN represents True Negatives (i.e. lopsided galaxies clas-

sified as lopsided)

• Balanced Accuracy: Average of the recall obtained for each class. Expressed

as:

balanced accuracy =
1

2
(TNR × TPR)

• Geometric Mean (G-mean): Square root of TNR and TPR. Expressed as:
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G − mean = (TNR × TPR)1/2

• ROC-AUC: Calculates the area under the Receiver Operating Characteristic

(ROC) curve, by using the trapezoidal rule, which approximates the area

under the curve (AUC) as a series of trapezoids. Considering a series of

points in the ROC curve, in the form of (x1, yi), (x2, y2), ..., (xN , yN), the

area under the curse is expressed as:

ROC − AUC =
N−1∑
i=1

(xi+1 − xi)(yi + yi+1)

2

The selected metrics are used to evaluate the results of our classifiers. In

particular, precision, TPR, and F1-score are important metrics to evaluate the

performance of any type of model. However, these metrics are all sensitive to

imbalanced dataset. As a result, they could mislead the algorithm during the

training and validation process. To avoid this, we focus the analysis of our classi-

fiers to TNR, balanced accuracy, and G-mean. This metrics are selected following

Chen and Breiman (2004) work, which ensure a correct analysis due to the imbal-

anced nature of our dataset. Lastly, we also consider ROC-AUC for the analysis,

as it gives us an important insight on how the model is performing without any ef-

fect of the imbalance. Still, we present the values for TPR, precision, and F-score,

as a reference.



Chapter 4

Results and Analysis

4.1 Classification Results

In this section we introduce and analyze the results of the algorithms for the

automatic classification between lopsided and symmetric galaxies. As a brief out-

line of our classification pipeline, we train the classifiers mentioned in Sect. 3.2

with 5,542 galaxies, constituting 70% of the total sample. This enables the algo-

rithm to obtain important underlying patterns and/or relationships between the

galaxies and their features, which are then used for the prediction in the final

step. The remaining galaxies are consider for the testing set, which compromises

a total of 2,377 galaxies, or 30% of the remaining sample. For each galaxy, these

decision trees produce a class prediction—either lopsided or symmetric—and the

class that is predicted in more than half of the decision trees is taken as the fi-

nal prediction for that galaxy. Due to the imbalanced nature of our dataset, we

define lopsided as the negative class and symmetric galaxies as the positive class.

Usually, the majority class is better represented and naturally favorable by the

algorithm over the minority class. To avoid this problem, we designate the mi-

nority class as the positive class, which helps with the interpretability of metrics,

such as TPR, precision, and ROC-AUC for rare cases. Since we also obtain a

proxy of the probability of a galaxy being in the positive/negative class, we test

different thresholds, or cut-off, to classify the samples and to explore how such

threshold can affect our results. As a default, this threshold is set at 0.5, i.e galax-

ies with probabilities equal or greater than this value are labeled as the positive

class or, in our case, symmetric galaxies. Galaxies with probabilities lesser than

45
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Table 4.1: Metric scores of the classifiers, SMOTE+RF and BRF, applied to the testing set.
Each score is obtained by averaging the iterations of a cross-validation with niter = 5 and taking
into consideration its standard deviation.

SMOTE+RF BRF

Metric Score Score

Precision 0.702±0.013 0.675±0.007
TPR 0.797±0.019 0.833±0.014
F1-score 0.746±0.012 0.746±0.007
TNR 0.830±0.011 0.799±0.00
G-mean 0.813±0.010 0.816±0.006
Balanced-Accuracy 0.813±0.010 0.816±0.006

this value are labeled as the negative class; i.e. lopsided galaxies. Our analysis

showed that differences in the results obtained between the different cut-offs is

negligible. Therefore the following analysis was performed with the default value,

0.5, for SMOTE+RF and BRF.

The results of each model’s performance for the testing set are listed in Table

4.1. Each value of the metrics is obtained by averaging the result scores of each

iteration of a cross-validation with number of iterations niter = 10, which is the

default value, and taking into consideration its standard deviation. It is clear that

both classifiers provide similar results, with comparable values in most metrics.

Based on this, we select as our classifier SMOTE+RF since it results in better

TNR metric. As previously discussed, we are working with a unbalanced data set,

with more than 70% of the data belonging to the negative class (lopsided objects).

Thus, a high TNR indicates a better performance for the most populated class of

our sample.

Fig. 4.1 shows the confusion matrix (CM) for SMOTE+RF. The x-axis in-

dicates the predicted class or predicted label, obtained from the classifier, and

the y-axis show the actual class or actual label, obtained from the A1 parame-

ter. In general, a CM allows us to visually inspect the fractions of correct and

incorrect classification we have obtained. In our testing sample, and based on our

A1 classification criteria, we count with 1,578 true lopsided and a total 799 true

symmetric galaxies. Interestingly our classifier is able to correctly classify 81%

of the lopsided objects and approximately the same amount for their symmetric
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Figure 4.1: Confusion matrix for the testing set of the best model, SMOTE+RF. The x-axis
is the predicted class or predicted label, and the y-axis is the actual class or actual label. The
percentage with respect each type of galaxy set is on parenthesis.

Figure 4.2: Receiver Operating Characteristic (ROC) plot considering all the classification
thresholds of the testing set.
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counterparts. In absolute number, we obtain a total of 1,922 correctly classified

galaxies, against 455 wrongly classified objects. It is worth highlighting the very

good performance of the SMOTE+RF classifier, which has been purely obtained

based on features that are related to our simulated galaxies internal properties.

No information about environments has been introduced during the training pro-

cess. This is illustrated by obtaining the value of the area under the curve of the

ROC plot, as shown in Fig. 4.2. By combining both axis, the resulting area under

the curve yields important information about the performance of the classifier.

This value is shown in the legend of the plot, where in our case we obtain a value

of 0.89. The closer the value is to 1, the better. If the value is closer to 0.5, as

shown as blue dashed line, the classifier has a bad performance.

4.1.1 Interpretation of the Random Forest classification

Supervised algorithms, including RFs, suffer from interpretability of the deci-

sions leading to the classification. This is often called the “black box” problem. In

RFs, it arises due to the high quantity of decision trees added to the ensemble. In

this section, we interpret and analyze the decisions lead by the model to subdivide

the galaxies between lopsided and symmetric by ranking the importance of the

features used in the classification process.

We use the permutation importance attribute from randomforestclassi-

fier. There are various methods for ranking feature importance, but given the

continuous nature of our dataset—where no categorical features are used for train-

ing or testing— we rely solely on permutation importance . This attribute works

by permuting, or shuffling, the values of each feature and calculating the resulting

decrease of a specified metric, which by default is accuracy, defined as the fraction

or count of the correct predictions. The decrease in the score is then used to rank

each feature: the higher the score, the more it affects the model’s performance,

thus making the feature important for the model to maintain a higher accuracy.

However, since our dataset is imbalanced, using accuracy would not return an

accurate representation of the importance of our features. To address this issue,

we use balanced-accuracy instead. As discussed in Sec. 3.3, this metric represents

the averaged fraction of correct classified galaxies for both the negative and posi-

tive class. In this, each class contribute equally to the final score, regardless of its
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Table 4.2: Feature Importance of each parameter calculated by permutation importance for
SMOTE+RF. The score is obtained averaging each iteration of a cross-validation with niter = 5,
which is the default value, and taking into consideration its standard deviation.

Rank Feature Score

1 µ∗ 0.242930±0.010621
2 TP 0.072285±0.003824
3 SFR 0.047444±0.005302
4 DT 0.009005±0.002047
5 Λ(R) 0.006586±0.002012
6 M50 0.006234±0.000864
7 c/a 0.004205±0.000934
8 C 0.003042±0.003434
9 R50 0.001760±0.002815
10 Rext 0.000721±0.000990

size. Considering that the accuracy metric disproportionately favors the majority

class in imbalanced datasets due to its over-representation, balanced accuracy is

an alternative to avoid inaccurate results.

The results of this procedure are shown in Table 4.2, where lists the rank of

each feature obtained by permutation importance . Considering that we want to

focus on the performance of SMOTE+RF with unseen data, we only calculate

the feature importance for the testing set. We obtain each score by averaging

the iterations of a cross-validation with niter = 5 and taking into consideration

its standard deviation. This analysis clearly sows that both µ∗ and TP are the

highest-ranked parameters, with µ∗ ranked first TP ranked second. As a way to

better visualize this, Fig. 4.3 also shows the variation of balanced-accuracy with

a box plot. Each box represents the distribution of the score value for each itera-

tion. The dotted line inside each box is the median of the distribution, and each

whisker represents the first and last score value. Indeed, we note that µ∗ is the

top- ranked parameter overall, indicating that it is the most important parameter

to consider in the classification process made by SMOTE+RF. As we previously

mentioned, and as seen in Fig. 3.3, lopsided and symmetric galaxies are charac-

terized by different µ∗ distributions. This is in agreement with previous results

(Reichard et al., 2008; Zaritsky et al., 2013; Varela-Lavin et al., 2023; Dolfi et al.,

2023), where lopsided galaxies tend to show significantly lower a densities in the
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Figure 4.3: Box plot of each feature from the testing set, ranked by their importance as deter-
mined by the feature permutation attribute from SMOTE+RF. Each box represents the range
of the different scores obtained from a cross-validation with niter = 5. The inner dashed line
represents the median value of each distribution. The whiskers on each box represent the mini-
mum and maximum value of each distribution.

inner regions (as defined by their R50) with respect to the symmetric counterparts.

Although not as important as µ∗, TP and SFR also play an important role

in the classification process in comparison with the rest of the features. This

is also in agreement with previous results, where an (anti-) correlation between

lopsidedness and TP (e.g. Gómez et al., 2016) and a correlation between lopsid-

edness and SFR (e.g. Conselice et al., 2000) have been reported. In particular,

TP represents a proxy of the tidal force exerted by the inner galactic regions on

the outer disk material. In other words, it indicates how gravitationally cohesive

a galaxy is. The relevance of this parameter is clearly reflected in the separation

between the distribution of both types of galaxies, as previously seen in Fig. 3.3,

where lopsided galaxies tend to have lower values of TP than symmetric galaxies.

These findings align with the conclusions of Varela-Lavin et al. (2023) and Dolfi

et al. (2023), which propose that lopsided perturbations serve as indicators of

intrinsic galaxy properties, rather than being predominantly driven by environ-

mental processes. In other words, galaxies with low central stellar densities are

weakly gravitationally cohesive and, thus, are more susceptible to lopsided per-
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Figure 4.4: Radial profiles of A1 for our four classification cases, calculated as the median of
A1 for each bin with respect to R90. The fuchsia and blue distributions represent the correctly
classified lopsided galaxies (LGA1

− LGm) and symmetric galaxies (SGA1
− SGm), respectively.

The green distribution represents symmetric galaxies classified as lopsided (SGA1
− LGm) and

the purple distribution represents lopsided galaxies classified as symmetric (LGA1
− SGm). The

shaded areas represent the 25th and 75th percentiles of each sample.

turbations, independently of the particular perturbing agent. On the other hand,

SFR ranking third place is an interesting result, as it is been shown that there

is a correlation between A1 and current SFR (Zaritsky and Rix, 1997; Rudnick

et al., 2000; Reichard et al., 2009). As discussed by  Lokas (2022), some internal

properties of lopsided and symmetric galaxies can be linked with their current

SFR, e.g. lopsided galaxies having bluer colors, larger gas fractions, and lower

metallicity than symmetric galaxies. Moreover, Dolfi et al. (2023) showed that

lopsided galaxies tend to be, on average, significantly more star forming than

symmetric galaxies at later times. Symmetric galaxies, on the contrary, have an

earlier assembly with shorter and more intense star forming bursts. As a result,

and considering galaxies with similar stellar masses at the present-day, while sym-

metric galaxies tend to develop a more pronounce central region at earlier times,

lopsided galaxies tend to form at larger fraction of their stellar populations later,

typically developing a more extended stellar disk and less dense inner regions.

Lastly, Fig. 4.3 shows the relative importance of the remaining 7 features. It is

clear that they have a minimal impact on the classification procedure.
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To analyze the classification made by SMOTE+RF, we plot in Fig. 4.4 the

median of A1 as a function of radius for the four cases defined by the classifier. To

generate this figure, the radial extension of each simulated galaxy was normalized

by its corresponding R90. We focus on the radial interval (0.5 − 1.4)R90, as it is

the considered interval for the Fourier decomposition. The shaded areas represent

the 25th and 75th percentiles of the distribution. In the left plot, the fuchsia

distribution represents correctly classified lopsided galaxies, defined as (LGA1 −
LGm), and the purple distribution represent lopsided galaxies classified by our

model as symmetric, defined as (LGA1 − SGm). The right plot is the same as the

left one but for symmetric galaxies. Here the cyan color represent the distribution

of correctly classified symmetric galaxies, defined as (SGA1 −SGm), while in green

we show symmetric galaxies classified as lopsided, defined as (SGA1 −LGm). Note

that incorrectly classified cases do not follow the same trend as the correctly

classified distributions. In the case of (LGA1 − SGm) on the left plot, from 0.5R90

to 0.9R90 the magnitude of A1 starts increasing at the same rate than the correctly

classified sample. However, from 0.9R90 onward, the slope is less steep, meaning

that the magnitude of A1 does not increase as much as in (LGA1 −LGm). In other

words, while incorrectly classified galaxies have indeed an outer perturbed region,

the strength of the perturbations is typically weaker with respect to correctly

classified galaxies. On the right panel we show that the A1 profile of both correctly

(SGA1 −SGm) and incorrectly classified galaxies (SGA1 −LGm) remains below the

0.1 threshold chosen to classify lopsided galaxies based on the A1 parameter.

Nonetheless, wrongly classified symmetric galaxies tend to have a larger A1 value

at all radii and they do cross the threshold at the outermost edge. In the following

section we explore in detail the main reasons that drove the SMOTE+RF method

to misclassify these galaxies.

4.1.2 Interpretation of the Misclassified Cases

In the previous section, we analyzed the results of applying RFs algorithms to

the internal parameters of our selected sample of lopsided and symmetric galaxies.

In particular, we find that the µ∗ and TP parameters are the primary features used

by the classifier to subdivide galaxies as either lopsided or symmetric, consistent

with previous observational studies. However, there are 455 galaxies in the test-

ing set that are misclassified. In this section, we focus on the misclassified cases,
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Figure 4.5: A1 distributions of the four classification cases made by SMOTE+RF applied to
the testing set. (left) Misclassified cases. The purple dashed distribution represents the actual
symmetric galaxies classified by the model as lopsided galaxies (SGA1

− LGm), and the green
dashed distribution represents the actual lopsided galaxies classified by the model as symmetric
galaxies (LGA1

− SGm). (right) Correctly classified cases. The cyan distribution represents
symmetric galaxies classified as symmetric (SGA1

−SGm). The magenta distribution represents
lopsided galaxies classified as lopsided (LGA1 − LG). Each distribution has in parenthesis their
respective number.

(LGA1 − SGm) and (SGA1 − LGm), to investigate the underlying reasons behind

the misclassification.

To further study the incorrectly classified galaxies, in Fig. 4.5 we highlight the

A1 distribution of the four classification cases in comparison with the A1 distribu-

tion of the total sample, as seen in Fig. 3.2. Focusing on the left figure, the purple

dashed distribution represents lopsided galaxies classified as symmetric galaxies

(LGA1 − SGm) with a median of ∼ 0.09, and the green dashed distribution rep-

resents symmetric galaxies classified as lopsided galaxies (SGA1 − LGm) with a

median of ∼ 0.12. The cyan and magenta distributions represent the lopsided

galaxies classified as lopsided (LGA1 − LGm) and symmetric galaxies classified as

symmetric (SGA1−SGm), respectively. It is clear that all misclassified galaxies are

adjacent to the threshold A1 = 0.1 and, thus, represent challenging cases for our

classification models. In Fig. 4.6 we show the distribution of our selected features

for all the four different classification cases, following the same color coding as

in Fig. 4.5. Each dashed line represents the median of the corresponding distri-
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Figure 4.7: Normalized distribution of the central stellar mass density µ∗ (left), tidal parameter
TP (middle), and the disk extension Rext (right). Same format and color coding as Fig. 4.6.

bution. The upper panels represent the correctly classified cases and the bottom

panels represent the incorrectly classified cases. Note that the distributions differ

significantly in all of the three most important parameters by the classifier, µ∗,

TP, and SFR. And as expected, the largest differences are found in µ∗ and TP.

However, even the radial distributions, Rext and R50, show differences. For the

following analysis, we selected µ∗, TP, and Rext as they are consider to show the

largest difference between the distributions. For an easier interpretation, we

added Fig. 4.7, which only contains the distributions of µ∗, TP, and

Rext. It follows the same format and color coding as Fig. 4.6, where the

correct cases are in the upper panels and the incorrect classification

cases are in the bottom panels. Two important things stand out. First, the

incorrect distributions of the three inspected parameters show more significant

overlap with respect to the correctly classified sample. The medians are, in all

cases, closer to the median of the overall sample. This is most clear in the Rext

distributions, where both symmetric and lopsided nearly perfectly overlap with

each other. Second, and most importantly, we find that galaxies classified as

lopsided by our global A1 parameter, but identified as symmetric by our model

(LGA1 −SGm), have values of µ∗ and TP that are consistent with the distribution
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of correctly classified symmetric galaxies. In other words, they have relatively

large central surface density and TP values. Upon closer inspection of their im-

ages, we observe that such galaxies typically display a symmetric overall disk, but

a significant asymmetry in their outermost region. An example of such galaxy is

show in the top right panel of Fig. 4.8. These localized asymmetries, captured

by the global A1 parameter, not necessarily reflect the overall structure of the

disk and can be caused by recent episodes of gas accretion or very recent strong

interactions. On the other hand, galaxies classified as symmetric by the global

A1 parameter but asymmetric by our model (SGA1 −LGm) show low µ∗ and TP

values. Such galaxies display internal properties of typical lopsided galaxies, but

simply the morphological perturbation has not yet been triggered. The top left

panel of Fig. 4.8 shows an example of such situation.

To further explore the two examples of misclassified galaxies, in the second and

third row of Fig. 4.8 we show their radial A1 and density profiles, respectively.

The cyan regions in the second row highlight the radial interval (0.5 - 1.4)R90,

considered to measure A1. It is worth noting that both galaxies were selected by

considering extreme values of µ∗ and TP while having similar stellar mass. For

(SGA1 − LGm), the galaxy shows consistently low A1(R), even up to the disk

outermost regions. Interestingly, its inner stellar density is notably lower than

expected for a symmetric galaxy. Even its µ∗, highlighted with a red star, falls

below the mean of the overall sample (dashed magenta line). On the other hand,

for the (LGA1 − SGm), while the A1(R) shows values consistent with 0 within

most of the considered radial range, it shows a very strong rise in the disk out-

skirts. We note that this galaxy has a denser inner stellar region, highlighted by

its large µ∗ value which significantly surpass the median of the overall distribution.

Lastly, to understand these unexpected behavior, we explore on the two lower

rows the time evolution of the lopsided parameter and the orbital histories. Inter-

estingly, we find that the (LGA1 − SGm) galaxy (right panels) became a satellite

of a larger host approximately 1.5 Gyr ago. Previous to the pericentric passage,

this galaxy showed A1 values below the threshold. After the close interaction,

the A1 value rapidly grows as a result of the tidal perturbation of its outer disk.

Indeed, we find that this galaxy has internal properties consistent with the sym-

metric sample, but the strong recent interaction forced an outer tidal disruption,
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Figure 4.8: (Top panels) V-band face-on projected surface brightness distribution of a (left)
symmetric galaxy classified as lopsided (SGA1 −LGm) and a (right) lopsided galaxy classified as
symmetric (LGA1−SGm), considered as examples of the misclassification made by SMOTE+RF.
On the upper side, their respective A1 value and classification case are plotted on the left, and
their ID and redshift z on the right. On the bottom right, the values of the stellar mass (M∗),
central stellar mass density (µ∗), and tidal parameter (TP) are plotted. The dashed cyan lines
represent the inner radius R50 and the solid cyan lines represent the outer radius 1.4R90, which
are the limits of the radial interval used in the Fourier decomposition.
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Continuation of Fig. 4.8. (Middle panels) Lopsidedness and stellar density profiles with respect
to the radius, up to 1.4R90. In both cases, the cyan lines represent the start of the radial interval,
R50. The pink dashed lines represent the average central stellar mass density (µ∗) of the full
sample, with a value of 8.3, while the red stars represent the value of the cental stellar mass
density of the galaxy, µ∗, within R50. (Bottom panels) Lopsidedness and the respective orbit
of the most massive satellite with respect to lookback time. The red dashed line represents the
A1 threshold to classify lopsided and symmetric galaxies. The horizontal cyan line represents
0.5×R200, where R200 is defined as the virial radius of the central galaxy.

captured by the A1 parameter. In the case of the (SGA1 −LGm) (left panels), the

time evolution of A1 shows that, over most of its evolution, this galaxy was in-

deed strongly lopsided. The initial perturbations was likely induced by significant

interaction with a massive satellite galaxy (∼ 1:10) 6.5 Gyr ago (first pericentric

passage). After this point, the galaxy suffered no other interaction with satellite of

mass ratios < 1:100. Thus, the lopsided perturbation gradually relaxed, reaching

a present-day A1 value below the considered threshold. Even though its internal

structure make this galaxy susceptible to lopsided perturbations, the lack of sig-

nificant external perturbation during its late evolution resulted on a symmetric

configuration at the present-day.

We note that recent interactions cannot explain all the misclassified cases.

Indeed, only 76 of the 300 (LGA1 − LGm) cases are satellite galaxies of a more

massive host. Eight (8) additional galaxies have suffered significant interactions

(> 1:20) as centrals during the last 3 Gyr. Thus, important interaction can be

attributed to this misclassified class in only 28% of the cases. Nonetheless, as

previously discussed, other mechanisms such as gas accretion, instability in a

counter-rotating disk and torques from an off-centered dark matter halo could be

at play in the remaining cases (Jog and Combes, 2009). Among these mechanisms,

asymmetric gas accretion has been proposed as a common driver of lopsidedness.

As shown by Bournaud et al. (2005), interactions and mergers can trigger strong

lopsidedness in some cases, but they do not account for all the observed statistical

properties, such as a correlation between lopsidedness and the Hubble Type, or a

correlation between m = 1 and m = 2 asymmetries, among others. In a follow up

study we will focus on the misclassified cases to further the origin of lopsidedness

in galaxies with internal properties common to symmetric discs.



Chapter 5

Classification with observational

Parameters

Several parameters considered in this work as features require additional mod-

eling to be estimated. Thus, they cannot be directly obtained from observation

based on, e.g., photometric data. For example, the calculation of µ∗ involves the

application of additional stellar population models. Indeed, Reichard et al. (2008)

calculated the stellar surface mass density following Kauffmann et al. (2003) defi-

nition, which considers the stellar mass and the Petrosian half-light radius in the

z-band. Their stellar massed where estimated using a method that combines spec-

tral diagnostics of star formation histories with photometric data. Additionally,

the tidal parameter TP, requires an estimation of the total mass enclosed within

R50, which involves dynamical modeling of the galaxy.

Despite their importance of in the classification process of such parameters, in

this section we explore wether it is still possible to obtain a reliable classification

of lopsided and symmetric galaxies using parameters that are more readily ob-

tainable from photometric data. We follow the same pipeline mentioned earlier,

but we train and test the SMOTE+RF classifier with a subset of features that

could be estimated from multi-band photometric surveys such as S-Plus (Mendes

de Oliveira et al., 2019) and J-PAS (Benitez et al., 2014). In particular, we re-

place the parameter M50 by the galaxies r-band luminosity within R50, L50, thus

avoiding the need of stellar population models. In addition to L50, we consider

as features R50, Rext, c/a, and SFR. The later can be obtained from narrow band
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Table 5.1: Scores of the SMOTE+RF model on the testing set, using only observational param-
eters. Each score is obtained by averaging the iterations of a cross-validation with niter = 5 and
taking into consideration its standard deviation.

Metric Score

Precision 0.700 ± 0.013
Recall 0.788 ± 0.020
F1-score 0.741 ± 0.011
ROC-AUC 0.809 ± 0.009
TNR 0.830 ± 0.011
G-mean 0.809 ± 0.009
Balanced-Accuracy 0.809 ± 0.009

photometry around the Hα line through the Kennicut relation (Kennicutt, 1998).

We keep the same hyperparameters listed in Table 3.1, along with the same train-

ing and testing sets.

The results of this test are presented in Table 5.1, where list the metrics

obtained from the testing set. Interestingly, we find very good results, with a

performance of the SMOTE+RF algorithm that is only very mildly affected by

the limited number of features considered. Indeed, most scores are not signifi-

cantly affected. Compared to our previous results we find a negligible decrease

of 0.4% for balanced accuracy and no change for TNR. Additionally, ROC-AUC

has a score of 80.9%, which reflects on how well the model is able to differentiate

between both classes. As expected, substituting M50 by L50 did not introduced a

significant drop in the performance. To further characterize our classification, the

left panel of Fig. 5.1 shows the resulting CM. Note that we obtain a total of 1,927

correctly classified galaxies and only 535 incorrectly classified cases, which repre-

sent a 15% increase. Compared to our previous results, this model improves in

the identification of actual lopsided galaxies, but performs slightly worse in clas-

sifying actual symmetric galaxies as symmetric. The feature importance ranking

is shown on the right panel of Fig. 5.1, generated with the feature importance

attribute. We find that the most important parameters are now L50, R50 and

SFR. As before, c/a provides no significant information for the RF classifier.

Our results show that using readily available observational parameters offers a

simpler and reliable approach to classify lopsidedness in large observational sam-
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Figure 5.1: Confusion matrix of the testing set using SMOTE+RF with only observational
parameters. The x-axis is the predicted class or predicted label, and the y-axis is the actual
class or actual label. The percentage with respect each class is on parenthesis.

Figure 5.2: Box plot of each observational feature from the testing set, ranked by their im-
portance as determined by the feature permutation attribute from SMOTE+RF. Each box
represents the range of the different scores obtained from a cross-validation with niter = 5. The
inner dashed line represents the median value of each distribution. The whiskers on each box
represent the minimum and maximum value of each distribution.
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ples of galaxies, without the need of parameters that required additional modeling

to be estimated, such as µ∗ and TP. This approach could be particularly valuable

in large-scale surveys such as those soon will be provided by LSST (Ivezić et al.,

2019).



Chapter 6

Discussion and conclusions

In this thesis we selected a large sample of disk-like galaxies from the Illus-

trisTNG simulation to develop an algorithm capable of automatically classifying

galaxies between lopsided and symmetric. Our main goal was to explore whether

this classification can be accurately performed using only internal galactic pa-

rameters, thus neglecting information about their present-day environment. This

notion was concluded thanks to the strong correlation between lopsidedness and

the structural properties of galaxies.

To achieve this we employed the Random Forest algorithm, a machine learn-

ing approach that involves a supervised training process. To label our data as

lopsided and symmetric galaxies we employed a Fourier decomposition of the

galaxies’ stellar density distribution over the radial interval R50 − 1.4R90. We

computed a radially average power of the m = 1 mode, A1 within this range.

Galaxies with A1 > 0.1 were classified as lopsided, and the remaining as symmet-

ric. Our sample resulted in a total 5,273 lopsided and 2,646 symmetric galaxies.

The total sample was then divided into two datasets, a training set and

a testing set. The training set consisted of 5,542 galaxies (70% of the

total sample) and the testing set 2,377 galaxies (30% of the total sam-

ple). To avoid problems in the classification process due to the imbalanced an

nature of the dataset, we employed two variations of the RF algorithm: i) we used

SMOTE to oversample symmetric galaxies in the training set, thus evening both

classes, and ii) we used the BRF algorithm, which balances both classes on each

tree by only bootstrapping the minority class while undersampling the majority.
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Based on the considered metrics, we selected SMOTE+RF as the best model.

The classification resulted in a total of 1,922 and 455 correctly and incorrectly

classified galaxies, respectively. This translates in a balanced accuracy of accu-

rate classification rate of ≈ 80% of both classes. To interpret and understand the

different decisions leading the RF to the classification, we used a method to quan-

tify “features importance”. In particular we utilized and algorithm that randomly

permutes features’ values and calculates the decrease in a certain metric; which

in our case we choose balanced-accuracy. We found that, to distinguish between

both classes, the three most important parameters for the model are µ∗, TP, and

SFR. The excellent results obtained by our classifier, trained with features that do

not account for the galaxies environment, strongly supports the hypothesis that

lopsidedness is mainly a tracer of galaxies internal structures.

Even though our classifier demonstrated a very good performance, we find that

≈ 20% of the galaxies were misclassified. To study the misclassified cases, we first

explore the distribution of the main parameters used by the RF. First, we find

that the A1 value of the misclassified cases lies very close to the threshold used

to label galaxies as lopsided or symmetric. As a result, these cases are typically

associated to “borderline classifications” by A1. Interestingly, we find that the

distribution of the most important parameters, such as µ∗ and Tp are in good

agreement with class they have been associated to by the RF algorithm. In other

words, galaxies classified by A1 as lopsided, but as symmetric by the RF, have

large µ∗ and Tp values. Conversely, galaxies classified by A1 as symmetric, but as

lopsided by the RF, have low µ∗ and Tp values.

To further explore why galaxies with large central surface density and strongly

cohesive present perturbed outer disk region, we selected a representative case.

We find that the selected galaxy became a satellite of a more massive host ≈ 1.7

Gyr ago. Previous to the crossing of host virial radius, the galaxy had a symmetric

configuration. However, shortly after its first pericentric passage its outer regions

become perturbed due to the strong tidal interaction. Such strong and recent

interaction induced a temporary lopsided perturbation on this galaxy. We find

that 28% of this misclassified class are either satellites of a more massive host,

or have had a very recent strong tidal interactions with a massive companion

(>1:20). For the other misclassified cases, other mechanism, such as asymmetric
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gas accretion, must be considered to explain the classifications. We will further

explore this in a follow up analysis. In the case of galaxies with low µ∗ and TP

misclassified as symmetric by the RF algorithm, we find that, typically, they have

not experienced recent significant interactions with massive companions. Thus,

even though the are susceptible to develop a lopsided perturbation, no external

interaction have trigger its onset.

Several parameters considered in this work as features require additional mod-

eling to be estimated. Considering the advent of several surveys such as S-PLUS

(Mendes de Oliveira et al., 2019), J-PAS (Benitez et al., 2014), and the LSST

(Ivezić et al., 2019), we explored whether the performance of our classifier signif-

icantly drops when considering features that can be readily obtained from multi-

band photometric surveys. In particular, we replace stellar mass estimates with

their corresponding luminosity in the r-band, and dropped parameters such as Tp

that involve dynamical modeling to estimate the total galaxy mass within R50.

Interestingly, we find the performance of our modeling is very mildly affected,

with recovery rates of ∼ 78%. These results are very promising, as our algorithm

could allow us to rapidly extract samples of lopsided galaxies from large surveys,

allowing us to explore whether lopsidedness in present-day disk galaxies is con-

nected to their specific evolutionary histories, which shaped their distinct internal

properties (Dolfi et al., 2023).



Chapter 7

Future work

A previous part of this thesis was to study the images of lopsided and sym-

metric galaxies, also obtained from TNG50, using a CNN (see Sect.1.2 for a brief

description). The main goal is this case was to study the morphological differences

of their galactic disk with the information obtained from the neural network, with

which both types of galaxies could be then characterized and classified. This was

done in a CNN used to classify stellar stream in Milky Way-like galaxies from the

Auriga simulation, part of the doctorate thesis of Alex Casanova. As both types

of galaxies’ images were similar, we did not have any problem in using our sample

to train and test that classifier. We tested different hyperparameters (such as

batch size, regularization, among others) and performed an oversampling and un-

dersampling to the images due the imbalanced nature of our dataset. With this,

the resulting accuracy score was of ∼80%. However, the misclassified cases had

a similar behavior as the ones from SMOTE+RF, where they were also adjacent

to the A1 threshold. Now that we have deeper knowledge in these cases thanks

to studying the internal properties of these galaxies, we would like to come back

to using CNNs to study lopsidedness as images can also be easily obtained in

telescopes and surveys.

Considering the myriad types of machine learning algorithms, we would also

like to continue studying and characterizing this asymmetry using new and up-

to-date models. For instance, transformers are an interesting algorithm, shown

to be one of the most popular and with the highest accuracy among image classi-

66



7 Future work 67

fiers (e.g. see Papers with Code1, a community-based webpage which gathers and

ranks open-source deep learning models).

Lastly, and as previously stated, we would like to test our classifiers with ob-

servational data from photometric surveys, e.g. from S-PLUS, J-PLUS, S-PAS,

and SDSS.

1https://paperswithcode.com/about

https://paperswithcode.com/about


Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,

G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,

Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
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Duarte, M. V., De Prá, M., Favole, G., Galarza, A., Galbany, L., Garcia,
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Kartaltepe, J. S., Barro, G., Bernardi, M., Mei, S., Shankar, F., Dimauro, P.,

Bell, E. F., Kocevski, D., Koo, D. C., Faber, S. M., and Mcintosh, D. H. (2015).

A Catalog of Visual-like Morphologies in the 5 CANDELS Fields Using Deep

Learning. Astrophys. J. Suppl., 221(1):8.
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Versillé, S., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon,

E., Hobson, M., Holmes, W. A., Hornstrup, A., Hovest, W., Huang, Z., Huffen-

berger, K. M., Hurier, G., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Juvela, M.,

Keihänen, E., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche, J., Knox, L.,

Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. M.,
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Mandolesi, N., Mangilli, A., Marchini, A., Maris, M., Martin, P. G., Martinelli,

M., Mart́ınez-González, E., Masi, S., Matarrese, S., McGehee, P., Meinhold,

P. R., Melchiorri, A., Melin, J. B., Mendes, L., Mennella, A., Migliaccio, M.,
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